Natural Language Processing with Deep Learning CS224N/Ling284

John Hewitt Lecture 8: Self-Attention and Transformers *Adapted from slides by Anna Goldie, John Hewitt*

The Transformer Decoder

- A Transformer decoder is how we'll build systems like language models.
- It's a lot like our minimal selfattention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our selfattention with multi-head selfattention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

Hypothetical Example of Multi-Head Attention

Attention head 2 attends to syntactically relevant words

I went to Stanford CS 224n and learned

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as output = $\operatorname{softmax}(XQ(XK)^{\top})XV \in \in \mathbb{R}^{n \times d}$.

Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word *i*, self-attention "looks" where $x_i^{\top}Q^{\top}Kx_j$ is high, but maybe we want to focus on different *j* for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where *h* is the number of attention heads, and ℓ ranges from 1 to *h*.
- Each attention head performs attention independently:
 - output_{ℓ} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where output_{ℓ} $\in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = $[output_1; ...; output_h]Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

Multi-head self-attention is computationally efficient

- Even though we compute *h* many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the matrices are the same sizes.

Scaled Dot Product [Vaswani et al., 2017]

- "Scaled Dot Product" attention aids in training.
- When dimensionality *d* becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

output_{$$\ell$$} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Decoder

- Now that we've replaced selfattention with multi-head selfattention, we'll go through two optimization tricks that end up being :
 - Residual Connections
 - Layer Normalization
- In most Transformer diagrams, these are often written together as "Add & Norm"

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- **Residual connections** are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where *i* represents the layer)

$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

 We let X⁽ⁱ⁾ = X⁽ⁱ⁻¹⁾ + Layer(X⁽ⁱ⁻¹⁾) (so we only have to learn "the residual" from the previous layer)

$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

- Gradient is **great** through the residual connection; it's 1!
- Bias towards the identity function!

[no residuals] [residuals] [Loss landscape visualization, Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

The Transformer Decoder

- The Transformer Decoder is a stack of Transformer Decoder Blocks.
- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.

The Transformer Encoder

- The Transformer Decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- This is the Transformer Encoder. The only difference is that we remove the masking in the self-attention.

The Transformer Encoder-Decoder

- Recall that in machine translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform crossattention to the output of the Encoder.

Probabilities

Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_n$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_n$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the **decoder**, $q_i = Qz_i$.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3**. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE EN-FR		EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		

³⁹ [Test sets: WMT 2014 English-German and English-French]

[Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

	Model	Test perplexity	ROUGE-L						
	seq2seq-attention, $L = 500$	5.04952	12.7						
1	Transformer-ED, $L = 500$	2.46645	34.2						
	Transformer-D, $L = 4000$	2.22216	33.6						
	Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2						
	Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9						
	Transformer-DMCA, $MoE-256$, $L = 7500$	1.90325	38.8						
		/							
old stand	dard Transforme	Transformers all the way down.							

[Liu et al., 2018]; WikiSum dataset

The

Great Results with Transformers

Before too long, most Transformers results also included **pretraining**, a method we'll go over on Thursday.

Transformers' parallelizability allows for efficient pretraining, and have made them the de-facto standard.

On this popular aggregate benchmark, for example:

GLUE

All top models are Transformer (and pretraining)-based.

	Rank	Name	Model	URL	. Score
	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8
	2	HFL iFLYTEK	MacALBERT + DKM		90.7
+	3	Alibaba DAMO NLP	StructBERT + TAPT		90.6
+	4	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
	5	ERNIE Team - Baidu	ERNIE		90.4
	6	T5 Team - Google	T5		90.3

More results Thursday when we discuss pretraining.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3.** Great results with Transformers
- 4. Drawbacks and variants of Transformers

What would we like to fix about the Transformer?

- Quadratic compute in self-attention (today):
 - Computing all pairs of interactions means our computation grows quadratically with the sequence length!
 - For recurrent models, it only grew linearly!
- Position representations:
 - Are simple absolute indices the best we can do to represent position?
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Quadratic computation as a function of sequence length

- One of the benefits of self-attention over recurrence was that it's highly parallelizable.
- However, its total number of operations grows as $O(n^2d)$, where n is the sequence length, and d is the dimensionality.

$$XQ = XQK^{\mathsf{T}}X^{\mathsf{T}} = XQK^{\mathsf{T}}X^{\mathsf{T}} \qquad \qquad \begin{array}{c} \text{Need to compute all} \\ pairs of interactions! \\ O(n^2d) \end{array}$$

- Think of *d* as around **1**, **000** (though for large language models it's much larger!).
 - So, for a single (shortish) sentence, $n \leq 30$; $n^2 \leq 900$.
 - In practice, we set a bound like n = 512.
 - But what if we'd like $n \ge 50,000$? For example, to work on long documents?

Work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, Can we build models like Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, Linformer [Wang et al., 2020]

Key idea: map the sequence length dimension to a lowerdimensional space for values, keys

Do we even need to remove the quadratic cost of attention?

- As Transformers grow larger, a larger and larger percent of compute is **outside** the self-attention portion, despit the quadratic cost.
- In practice, almost no large Transformer language models use anything but the quadratic cost attention we've presented here.
 - The cheaper methods tend not to work as well at scale.
- So, is there no point in trying to design cheaper alternatives to self-attention?
- Or would we unlock much better models with much longer contexts (>100k tokens?) if we were to do it right?

Do Transformer Modifications Transfer?

• "Surprisingly, we find that most modifications do not meaningfully improve performance."

Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02	26.62
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13	26.47
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34	26.75
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02	26.08
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34	27.12
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87	26.87
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87	27.02
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99
SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02
LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34	26.53
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	74.31	17.51	23.02	26.30
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34	26.89
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14
Rezero + LaverNorm	223M 223M	11.1T	3.51 3.26	2.262 ± 0.003	1.939	61.69 70.42	15.64 17.58	20.90 23.02	26.37 26.29
Rezero + LayerNorm Rezero + RMS Norm	223M 223M	$\frac{11.1T}{11.1T}$	3.26	2.223 ± 0.006 2.221 ± 0.009	1.858	70.42	17.38	23.02	26.19
Fixup	223M 223M	11.1T 11.1T	2.95	2.221 ± 0.009 2.382 ± 0.012	2.067	58.56	14.42	23.02	26.31
24 layers, $d_{\rm ff} = 1536$, $H = 6$	224M	11.1T	3.33	2.200 ± 0.007	1.843	74.89	17.75	25.13	26.89
24 layers, $d_{ff} = 1530$, $H = 6$ 18 layers, $d_{ff} = 2048$, $H = 8$	224M 223M	11.1T 11.1T	3.33	2.200 ± 0.007 2.185 ± 0.005	1.845	74.89	16.83	25.13	26.89
8 layers, $d_{\rm ff} = 4608, H = 18$	223M	11.1T	3.69	2.190 ± 0.005 2.190 ± 0.005	1.847	74.58	17.69	23.28	26.85
6 layers, $d_{\rm ff} = 6144, H = 24$	223M	11.1T	3.70	2.201 ± 0.010	1.857	73.55	17.59	24.60	26.66
Block sharing	65M	11.1T	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48
+ Factorized embeddings	45M	9.4T	4.21	2.631 ± 0.305	2.183	60.84	14.00	19.84	25.27
+ Factorized & shared em- beddings	20M	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
Encoder only block sharing	170M	11.1T	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23
Decoder only block sharing	144M	11.1T	3.70	2.352 ± 0.029	2.082	67.93	16.13	23.81	26.08
Factorized Embedding	227M	9.4T	3.80	2.208 ± 0.006	1.855	70.41	15.92	22.75	26.50
Factorized & shared embed-	202M	9.1T	3.92	2.320 ± 0.010	1.952	68.69	16.33	22.22	26.44
dings									
Tied encoder/decoder in-	248M	11.1T	3.55	2.192 ± 0.002	1.840	71.70	17.72	24.34	26.49
put embeddings									
Tied decoder input and out-	248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67
put embeddings									
Untied embeddings	273M	11.1T	3.53	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	204M	9.2T	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66
Adaptive softmax	204M	9.2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56
Adaptive softmax without	223M	10.8T	3.43	2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72
projection									
Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82
Transparent attention	223M	11.1T	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80
Dynamic convolution	257M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73
Evolved Transformer	217M	9.9T	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58
Synthesizer (dense)	224M	11.4T	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63
Synthesizer (dense plus)	243M	12.6T	3.22	2.191 ± 0.010	1.840	73.98	16.96	23.81	26.71
Synthesizer (dense plus al-	243M	12.6T	3.01	2.180 ± 0.007	1.828	74.25	17.02	23.28	26.61
pha) Synthesizer (factorized)	207M	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42
Synthesizer (random)	254M	10.1T 10.1T	4.08	2.326 ± 0.012	2.009	54.27	10.35	19.56	26.44
Synthesizer (random) Synthesizer (random plus)	292M	12.0T	3.63	2.320 ± 0.012 2.189 ± 0.004	1.842	73.32	17.04	24.87	26.43
Synthesizer (random plus) Synthesizer (random plus	292M 292M	12.0T	3.42	2.185 ± 0.004 2.186 ± 0.007	1.828	75.24	17.04	24.07	26.39
alpha)									
Universal Transformer	84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91
Mixture of experts	648M	11.7T	3.20	2.148 ± 0.006	1.785	74.55	18.13	24.08	26.94
Switch Transformer	1100M	11.7T	3.18	2.135 ± 0.007	1.758	75.38	18.02	26.19	26.81
Funnel Transformer	223M	1.9T	4.30	2.288 ± 0.008	1.918	67.34	16.26	22.75	23.20
Weighted Transformer	280M	71.0T	0.59	2.378 ± 0.021	1.989	69.04	16.98	23.02	26.30
Product key memory	421M	386.6T	0.25	2.155 ± 0.003	1.798	75.16	17.04	23.55	26.73

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang *	Hyung Won Chung	Yi Tay	William Fedus
${\bf Thibault} \ {\bf Fevry}^\dagger$	${\bf Michael} \; {\bf Matena}^\dagger$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin} \ {\bf Raffel}^\dagger$

Parting remarks

- Pretraining on Tuesday!
- Good luck on assignment 4!
- Remember to work on your project proposal!

Word structure and subword models

Let's take a look at the assumptions we've made about a language's vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set. All *novel* words seen at test time are mapped to a single UNK.

Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

- Many languages exhibit complex **morphology**, or word structure.
 - The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have hundreds of conjugations, each encoding a wide variety of information. (Tense, mood, definiteness, negation, information about the object, ++)

Here's a small fraction of the conjugations for *ambia* – to tell.

Conjug	ation of -	ambia																[less 🔺		
								Noi	n-finite fo	rms										
		Form						Positive							Negative					
		Infinitive						kuambia							kutoambia	a				
	_								ole finite f	forms										
		sitive for						Singular							Plural					
		mperativ	e					ambia				and the second			ambieni					
		Habitual						Comr	lex finite	forme	nua	mbia								
		_			Dore	one /		Comp	nex mine	TOTINS										
		Pers			Clas	ons /						Clas	sses							
Polarity	1:	st	21	nd	3rd /	M-wa Pl. / 2	M-	-mi	N	la	K	i-vi		N	U	Ku	Pa 16	Mu 18		
	Sg.	PI.	Sg.	PI.	Sg. / 1	Pl. / 2	3	4	5	6	7	8	9	10	11 / 14	Ku 15 / 17	16			
			-						Past									less 🖌		
Positive	niliambia naliambia	tuliambia twaliambia	uliambia waliambia	mliambia mwaliambia	aliambia	waliambia	uliambia	iliambia	liliambia	yaliambia	kiliambia	viliambia	iliambia	ziliambia	uliambia	kuliambia	paliambia	muliambia		
Negative	sikuambia	hatukuambia	hukuambia	hamkuambia	hakuambia	hawakuambi a	haukuambia	haikuambia	halikuambia	hayakuambi a	hakikuambia	havikuambia	haikuambia	hazikuambia	haukuambia	hakukuambi a	hapakuambi a	hamukuam a		
								Pr	esent									[less		
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia	kinaambia	vinaambia	inaambia	zinaambia	unaambia	kunaambia	panaambia	munaambi		
Negative	siambii	hatuambii	huambii	hamambii	haambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	haviambii	haiambii	haziambii	hauambii	hakuambii	hapaambii	hamuamb		
								F	uture									[less]		
Positive	nitaambia	tutaambia	utaambia	mtaambia	ataambia	wataambia	utaambia	itaambia	litaambia	yataambia	kitaambia	vitaambia	itaambia	zitaambia	utaambia	kutaambia	pataambia	mutaambi		
Negative	sitaambia	hatutaambia	hutaambia	hamtaambia	hataambia	hawataambi a	hautaambia			hayataambia	hakitaambia	havitaambia	haitaambia	hazitaambia	hautaambia	hakutaambia	hapataambia	а		
									unctive									[less]		
Positive	niambie	tuambie	uambie	mambie	aambie	waambie	uambie	iambie	liambie	yaambie	kiambie	viambie	iambie	ziambie	uambie	kuambie	paambie	muambie		
Negative	nisiambie	tusiambie	usiambie	msiambie	asiambie	wasiambie	usiambie	isiambie	lisiambie	yasiambie	kisiambie	visiambie	isiambie	zisiambie	usiambie	kusiambie	pasiambie	musiambie		
Deelthee	a la seconda la	to a second la		and the second state	and a second black		and the second state		Conditio		Line of the line		in a smith in	- In the second late	and the second state	In the second		[less		
Positive	-	tungeambia	ungeambia	mngeambia msingeambi	angeambia			ingeambia	lingeambia	yangeambia	kingeambia	vingeambia	ingeambia	zingeambia	-		pangeambia			
Negative	nisingeambi a	tusingeambi a hatungeamb	usingeambia		asingeambia	wasingeamb ia hawangeam	usingeambia haungeambi	isingeambia haingeambia	halingeambi		kisingeambi a hakingeambi		isingeambia	zisingeambi a hazingeambi	baungoambi		pasingeambi a			
	singeambia	ia	nungeumbia	a	nangeambia	bia	а	nanigeanbia	а	ia	a	a	nungeumblu	a	а	ia	bia	bia		
								Past C	onditiona	al								[less]		
Positive	ningaliambia	tungaliambia	ungaliambia	mngaliambia	angaliambia	wangaliambi a	ungaliambia	ingaliambia	lingaliambia	yangaliambi a	kingaliambia	vingaliambia	ingaliambia	zingaliambia	ungaliambia	kungaliambi a	pangaliambi a	mungaliam a		
	nisingaliamb	tusingaliamb	usingaliambi	msingaliamb	asingaliambi	wasingaliam	usingaliambi	isingaliambia	lisingaliambi	yasingaliam	kisingaliambi	visingaliambi	isingaliambia	zisingaliambi	usingaliambi a	kusingaliam	pasingaliam	musingalia		
Negative	ia singaliambia	hatungaliam bia	hungaliambi a	hamngaliam bia	hangaliambi a	hawangalia mbia	haungaliamb ia	haingaliambi a	halingaliamb ia	hayangaliam bia	hakingaliam bia	a havingaliam bia	haingaliambi a	hazingaliam bia	a haungaliamb ia	hakungaliam bia	hapangaliam bia	hamungali mbia		
							Cor	nditional	Contrary	to Fact								[less		
Positive	ningeliambia	tungeliambia	ungeliambia	mngeliambia	angeliambia	wangeliambi a					kingeliambia	vingeliambia	ingeliambia	zingeliambia	ungeliambia	kungeliambi a	pangeliambi a			
								Gr	nomic									[less]		
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	laambia	yaambia	chaambia	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia	mwaambia		
								Pr	erfect									less A		

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about structure below the word level. (Parts of words, characters, bytes.)

- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
- At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

- 1. Start with a vocabulary containing only characters and an "end-of-word" symbol.
- 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword.
- 3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained models.

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

Outline

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Encoders
 - 2. Encoder-Decoders
 - 3. Decoders
- 4. What do we think pretraining is teaching?

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

This quote is a summary of **distributional semantics**, and motivated **word2vec**. But:

"... the complete meaning of a word is always contextual, and no study of meaning apart from a complete context can be taken seriously." (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

Where we were: pretrained word embeddings

Circa 2017:

- Start with pretrained word embeddings (no context!)
- Learn how to incorporate context in an LSTM or Transformer while training on the task.

Some issues to think about:

- The training data we have for our downstream task (like question answering) must be sufficient to teach all contextual aspects of language.
- Most of the parameters in our network are randomly initialized!

[Recall, *movie* gets the same word embedding, no matter what sentence it shows up in]

Where we're going: pretraining whole models

In modern NLP:

- All (or almost all) parameters in NLP networks are initialized via pretraining.
- Pretraining methods hide parts of the input from the model, and train the model to reconstruct those parts.
- This has been exceptionally effective at building strong:
 - representations of language
 - **parameter initializations** for strong NLP models.
 - Probability distributions over language that we can sample from

[This model has learned how to represent entire sentences through pretraining]

What can we learn from reconstructing the input?

Stanford University is located in _____, California.

What can we learn from reconstructing the input?

I put _____ fork down on the table.
The woman walked across the street, checking for traffic over ____ shoulder.

I went to the ocean to see the fish, turtles, seals, and _____.

Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was ____.

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the _____.

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

Pretraining through language modeling [Dai and Le, 2015]

Recall the **language modeling** task:

- Model $p_{\theta}(w_t|w_{1:t-1})$, the probability distribution over words given their past contexts.
- There's lots of data for this! (In English.)

Pretraining through language modeling:

- Train a neural network to perform language modeling on a large amount of text.
- Save the network parameters.

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a "training neural nets" perspective?

- Consider, provides parameters $\hat{\theta}$ by approximating $\min_{\theta} \mathcal{L}_{\text{pretrain}}(\theta)$.
 - (The pretraining loss.)
- Then, finetuning approximates $\min_{\theta} \mathcal{L}_{\text{finetune}}(\theta)$, starting at $\hat{\theta}$.
 - (The finetuning loss)
- The pretraining may matter because stochastic gradient descent sticks (relatively) close to $\hat{\theta}$ during finetuning.
 - So, maybe the finetuning local minima near $\hat{\theta}$ tend to generalize well!
 - And/or, maybe the gradients of finetuning loss near $\hat{\theta}$ propagate nicely!

Lecture Plan

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Encoders
 - 2. Encoder-Decoders
 - 3. Decoders
- 4. What do we think pretraining is teaching?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Encoders

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

Decoders

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

Pretraining for three types of architectures

Decoders

The neural architecture influences the type of pretraining, and natural use cases.

Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

What's the best way to pretrain them?

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

So far, we've looked at language model pretraining. But **encoders get bidirectional context,** so we can't do language modeling!

Idea: replace some fraction of words in the input with a special [MASK] token; predict these words.

$$h_1, \dots, h_T = \text{Encoder}(w_1, \dots, w_T)$$

 $y_i \sim Aw_i + b$

Only add loss terms from words that are "masked out." If \tilde{x} is the masked version of x, we're learning $p_{\theta}(x|\tilde{x})$. Called **Masked LM**.

[Devlin et al., 2018]

Devlin et al., 2018 proposed the "Masked LM" objective and **released the weights of a pretrained Transformer**, a model they labeled BERT.

Some more details about Masked LM for BERT:

- Predict a random 15% of (sub)word tokens.
 - Replace input word with [MASK] 80% of the time
 - Replace input word with a random token 10% of the time
 - Leave input word unchanged 10% of the time (but still predict it!)
- Why? Doesn't let the model get complacent and not build strong representations of non-masked words. (No masks are seen at fine-tuning time!)

[Devlin et al., 2018]

• The pretraining input to BERT was two separate contiguous chunks of text:

Input	[CLS] my	dog is	cute [S	EP] he	likes play	##ing	[SEP]
Token Embeddings	E _[CLS] E _{my}	E _{dog} E _{is}	E _{cute} E _[SEP] E _{he}	E _{likes} E _{play}	E _{##ing}	E _[SEP]
Segment Embeddings	+ + E _A E _A	• • E _A E _A	► E _A E	+ + E _A E _B	• • E _B E _B	+ E _B	+ E _B
Position Embeddings	$\begin{array}{c c} \bullet & \bullet \\ \hline & E_0 \\ \hline & E_1 \\ \end{array}$	• • E ₂ E ₃	► E ₄ E	$\begin{array}{c} \bullet & \bullet \\ \bullet \\$	+ + E ₈	+ E ₉	▲

- BERT was trained to predict whether one chunk follows the other or is randomly sampled.
 - Later work has argued this "next sentence prediction" is not necessary.

Details about BERT

- Two models were released:
 - BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
 - BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
- Trained on:
 - BooksCorpus (800 million words)
 - English Wikipedia (2,500 million words)
- Pretraining is expensive and impractical on a single GPU.
 - BERT was pretrained with 64 TPU chips for a total of 4 days.
 - (TPUs are special tensor operation acceleration hardware)
- Finetuning is practical and common on a single GPU
 - "Pretrain once, finetune many times."

BERT was massively popular and hugely versatile; finetuning BERT led to new state-ofthe-art results on a broad range of tasks.

- QQP: Quora Question Pairs (detect paraphrase questions)
- QNLI: natural language inference over question answering data
- **SST-2**: sentiment analysis

- **CoLA**: corpus of linguistic acceptability (detect whether sentences are grammatical.)
- STS-B: semantic textual similarity
- MRPC: microsoft paraphrase corpus
- **RTE**: a small natural language inference corpus

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

If your task involves generating sequences, consider using a pretrained decoder; BERT and other pretrained encoders don't naturally lead to nice autoregressive (1-word-at-a-time) generation methods.

Extensions of BERT

You'll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:

- RoBERTa: mainly just train BERT for longer and remove next sentence prediction!
- SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining even when not changing the underlying Transformer encoder.

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERTLARGE						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7

Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive. But **lightweight** finetuning methods adapt pretrained models in a constrained way. Leads to **less overfitting** and/or **more efficient finetuning and inference.**

Full Finetuning

Adapt all parameters

Lightweight Finetuning

Train a few existing or new parameters

... the movie was ...

[Liu et al., 2019; Joshi et al., 2020]

Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a **prefix** of parameters, and **freezes all pretrained parameters**. The prefix is processed by the model just like real words would be. Advantage: each element of a batch at inference could run a different tuned model.

Parameter-Efficient Finetuning: Low-Rank Adaptation

Low-Rank Adaptation Learns a low-rank "diff" between the pretrained and finetuned weight matrices.

Easier to learn than prefix-tuning.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

- Language models! What we've seen so far.
 - Nice to generate from; can't condition on future words

For **encoder-decoders**, we could do something like **language modeling**, but where a prefix of every input is provided to the encoder and is not predicted.

$$\begin{aligned} h_1, \dots, h_T &= \text{Encoder}(w_1, \dots, w_T) \\ h_{T+1}, \dots, h_2 &= Decoder(w_1, \dots, w_T, h_1, \dots, h_T) \\ y_i &\sim Ah_i + b, i > T \end{aligned}$$

The **encoder** portion benefits from bidirectional context; the **decoder** portion is used to train the whole model through language modeling.

[Raffel et al., 2018]

What <u>Raffel et al., 2018</u> found to work best was **span corruption.** Their model: **T5**.

Inputs

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

Original text

Thank you for inviting me to your party last week.

This is implemented in text preprocessing: it's still an objective that looks like language modeling at the decoder side.

<u>Raffel et al., 2018</u> found encoder-decoders to work better than decoders for their tasks, and span corruption (denoising) to work better than language modeling.

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	\mathcal{LM}	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	\mathcal{LM}	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	\dot{M}	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

A fascinating property of T5: it can be finetuned to answer a wide range of questions, retrieving knowledge from its parameters.

NQ: Natural Questions WQ: WebQuestions TQA: Trivia QA

All "open-domain" versions

[Raffel et al., 2018]

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

• How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

Decoders

Encoders

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words
- All the biggest pretrained models are Decoders.

Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained to model $p(w_t|w_{1:t-1})$.

We can finetune them by training a classifier on the last word's hidden state.

> $h_1, \dots, h_T = \text{Decoder}(w_1, \dots, w_T)$ $y \sim Ah_T + b$

Where A and b are randomly initialized and specified by the downstream task.

Gradients backpropagate through the whole network.

[Note how the linear layer hasn't been pretrained and must be learned from scratch.]

Pretraining decoders

It's natural to pretrain decoders as language models and then use them as generators, finetuning their $p_{\theta}(w_t|w_{1:t-1})!$

This is helpful in tasks **where the output is a sequence** with a vocabulary like that at pretraining time!

- Dialogue (context=dialogue history)
- Summarization (context=document)

$$h_1, \dots, h_T = \text{Decoder}(w_1, \dots, w_T)$$

 $w_t \sim Ah_{t-1} + b$

Where *A*, *b* were pretrained in the language model!

[Note how the linear layer has been pretrained.]

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018's GPT was a big success in pretraining a decoder!

- Transformer decoder with 12 layers, 117M parameters.
- 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
- Byte-pair encoding with 40,000 merges
- Trained on BooksCorpus: over 7000 unique books.
 - Contains long spans of contiguous text, for learning long-distance dependencies.
- The acronym "GPT" never showed up in the original paper; it could stand for "Generative PreTraining" or "Generative Pretrained Transformer"

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for **finetuning tasks?**

Natural Language Inference: Label pairs of sentences as *entailing/contradictory/neutral* Premise: *The man is in the doorway* Hypothesis: *The person is near the door*

Radford et al., 2018 evaluate on natural language inference. Here's roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various *natural language inference* datasets.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	<u>89.3</u>	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	<u>83.3</u>		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used **in their capacities as language models**. **GPT-2**, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.