Natural Language Processing
with Deep Learning

CS224N/Ling284

P

John Hewitt

Lecture 8: Self-Attention and Transformers
Adapted from slides by Anna Goldie, John Hewitt

The Transformer Decoder

23

A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal self-
attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We’'ll next replace our self-
attention with multi-head self-
attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
. I .

went to Stanford CS 224n an learned
24

Hypothetical Example of Multi-Head Attention

I 25

Attention head 1
attends to entities

vV V \" Vv
k k k Kk
I went to Stanford
I went

Vv
k

CS

Vv
k

224n

to

g
\" \"
K Kk
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q
Vv V V V V

V V VvV
k k k k Kk k k Kk

went to Stanford CS 224n and learned

CS 224n and learned

Sequence-Stacked form of Attention

* Let’s look at how key-query-value attention is computed, in matrices.
e LetX = [xy;...;x,] € R™*4 phe the concatenation of input vectors.
« First, note that XK € R™*¢, XQ € R™4, XV € R™"*¢,
* The output is defined as output = softmax(XQ(XK)T)XV ee R™*¢,

First, take the query-key dot All pairs of
products in one matrix X0 = XQKT X7 attention scores!
multiplication: XQ(XK) T KT xT e RIXT
Next, softmax, and (3
compute the weighted softmax| xokTXxT | xy =
average with another

output € R™*4

matrix multiplication. \ /
26

Multi-headed attention

27

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xlTQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp,V, € Rdxﬁ, where h is the number of attention heads, and € ranges
from 1 to h.

Each attention head performs attention independently:
- output, = softmax(XQ,K; XT) * XV,, where output, € R4/"
Then the outputs of all the heads are combined!

. output = [outputy; ...; output,]Y, where Y € R4*¢

Each head gets to “look” at different things, and construct value vectors
differently.

Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.
« We compute XQ € R™ 4, and then reshape to R™*"*a/1 (| ikewise for XK, XV .)
* Then we transpose to R?™Xd/h. now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of
products in one matrix X0 — XQKT X7 attention scores!

multiplication: XQ(XK)T KT xT e R3Xnxn

/_/

Next, softmax, and ()
compute the weighted softmax| XokTxT | xy =

average with another p
matrix multiplication. \ /

output € R™**4

)8 MixX

Scaled Dot Product [Vaswani et al., 2017}

29

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

* Because of this, inputs to the softmax function can be large, making the
gradients small.

Instead of the self-attention function we’ve seen:

output, = softmax(XQ,K,; XT) x XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d /h (The dimensionality divided by the number of heads.)

XQoK; X7

output, = softmax(Jam) * XV,

The Transformer Decoder

Add & Norm
* Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
c e . . Add & Norm
optimization tricks that end up
Masked Multi-

being : ,
Head Attention

* Residual Connections (
* Layer Normalization

* |n most Transformer diagrams, Add Position
these are often written Embeddings
together as “Add & Norm T T~

Transformer Decoder

30

The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

* Instead of X = Layer(X“~1) (where i represents the layer)

X4 — Layer xW

« Welet X = XD 4 Layer(X“~1D) (so we only have to learn “the residual”
from the previous layer)

X4 — | ayer ?—’ xW

* Gradient is great through the residual
connection; it’s 1!

* Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,
31 Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

* Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

« Let x € R? be an individual (word) vector in the model.

e lLetu = Zj-lzlxj; this is the mean; u € R.

2
e leto = \/% Z?=1(xj — ,u) : this is the standard deviation; o € R.

« Lety € R%and 8 € R? be learned “gain” and “bias” parameters. (Can omit!)
 Then layer normalization computes:

X —u

output = *y + [

o+ €
Normalize by scalar /\/_ \ Modulate by learned

- mean and variance elementwise gain and bias

The Transformer Decoder

33

The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

Each Block consists of:
* Self-attention
 Add & Norm
* Feed-Forward
 Add & Norm

That’s it! We've gone through
the Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
N

Add & Norm
AN

Feed-Forward

T

(%

Add & Norm
N
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

/l\
Embeddings

Decoder Inputs

The Transformer Encoder Probabilities

Softmax
N
 The Transformer Decoder LSrcaEi
constrains to unidirectional N
context, as for language Add & Norm
models. C a
. o . 3L Feed-Forward
 What if we want bidirectional = 2
. D O
context, like in a bidirectional c |
o Add & Norm
RNN? RS
o § M It'/'\H d
e This is the Transformer o G VitImried
. i T Attention
Encoder. The only difference is v ©

that we remove the masking (w Block

in the self-attention. |
Add Position

. Embeddings
No Masking! T

Embeddings

Decoder Inputs
34

Probabilities

The Transformer Encoder-Decoder softman
Linear
e Recall that in machine 8
. Add & Norm
translation, we processed the N
source sentence with a Feed-Forward
bidirectional model and T
. Add & Norm
generated the target with a Add & Norm A
nidirectional model & Huerriead
u ' Feed-Forward At il
e For this kind of seq2seq A j
format, we often use a Add & Norm Add & Norm
Transformer Encoder-Decoder. o — Masked Multi-

. Head Attention
« We use a normal Transformer N

Encoder. w _— w Block

e Qur Transformer Decoder is v PLsition Add Position
modified to perform cross- Embe/?dings Embe}["\d‘”gs

attention to the output of the Embeddings

Embeddings
35 Encoder. Encoder Inputs Decoder Inputs

Cross-attention (details)

36

We saw that self-attention is when keys,
queries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm N
Let h4, ..., h,, be output vectors from the PN Multi-Head
Attention
Transformer encoder; x; € R4 Feed-Forward r1 7
. ¢ { 1’ EEnR
Let z4, ..., Zz,, be input vectors from the dd & Norm Add & Norm
N
Transformer decoder, z; € R? - Masked Multi-
: Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w R Block
_ _ | -
* ki =Kh;, v, =Vh,. Add Position Add Position
. Embeddings Enlie g
And the queries are drawn from the
Embeddings

decoder, q; = Qz;. Embeddings

Encoder Inputs Decoder Inputs

y Ly

Outline

Great results with Transformers

B N e

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Model BLEU Training Cost (FLOPs)
ode EN.-DE EN-FR EN.-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 246 39.92 2.3.109 1.4.1020
ConvS2S [9] 25.16 40.46 9.6-10'% 1.5.1020
MOoE [32] 26.03 40.56 2.0-10% 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 102V
GNMT + RL Ensemble [38] 2630 41.16 1.8-1020 1.1-102!
ConvS2S Ensemble [9] 26.36 41.29 7.7-10Y 1.2.10%!

39 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 342
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 37.9
Transformer-DMCA, MoE-256, L. = 7500 1.90325 38.8
The old standard Transformers all the way down.

40 [Liu et al., 2018]; WikiSum dataset

Great Results with Transformers

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate

Rank Name Model URL Score
benchmark, for example:

1 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 E 90.8
2 HFLIFLYTEK MacALBERT + DKM 90.7
x G L U E + 3 Alibaba DAMO NLP StructBERT + TAPT C}J. 906
" d I + 4 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 906

All top models are
Trans]E)ormer (and 5 ERNIE Team - Baidu ERNIE C}J. 90.4
pretralnlng)_based 6 T5 Team - Google TS C}J. 90.3

More results Thursday when we discuss pretraining. _
41 [Liu et al., 2018]

Outline

B N e

Drawbacks and variants of Transformers

What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

* For recurrent models, it only grew linearly!
e Position representations:
* Are simple absolute indices the best we can do to represent position?

e Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

43

Quadratic computation as a function of sequence length

* One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

« However, its total number of operations grows as O(n?d), where n is the
sequence length, and d is the dimensionality.

Need to compute all
X0 - XOQK'XT pairs of interactions!
2
KT XT c RTLXTL O(n d)

* Think of d as around 1, 000 (though for large language models it’s much larger!).
* So, for a single (shortish) sentence, n < 30; n? < 900.
* |n practice, we set a bound like n = 512.

* But what if we’d liken = 50,0007? For example, to work on long documents?
I 44

Work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, Linformer [\Wang et al., 2020]

Linear 120 F — Linformer, k=2048
' —s— Linformer, k=1024
—_ —dr— Linformer, k=512
Key idea: map the it = g |~ Linformer, k=256
£ | : — = Linformer, k=128
sequence le ngt h - T — y g Transformer
dimension to a lower- . Mtnl . S ol
. . " () e
dimensional space for Projetion | [Peeiosion 5
I k f = -—t = HE 10+ S S 2 &
values, keys - Linem:_]. Linear 1 B . '_.‘.‘:_:'__".-_—_?_-f-_—.—:?_t -_-.-_-.:-.*_-. == E-. — —_-:__*:__'-':'*

I

K

512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
Sequence length / batch size

o-@

45

Do we even need to remove the quadratic cost of attention?

46

As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

* The cheaper methods tend not to work as well at scale.
So, is there no point in trying to design cheaper alternatives to self-attention?

Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?

Do Transformer Modifications Transfer?

e "Surprisingly, we find that most modifications do not meaningfully improve
performance.”

Model Params Ops Stop/s Early loss Final loss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 1117 2.182 £ 0.005 1838 71.66 17.78 2302 | 26.62
b S
11T 27.12
1117
1111
11T
i
Softplus ii g
e n Do Transformer Modifications Transfer Across Implementations
ey i and Applications?
e Sharan Narang* Hyung Won Chung Yi Tay William Fedus

beddings

Encoder only block sharing ~ 170M 1117 1929 660 16323 2302 26,23
Decoder only block sharing 1440 1117 2.082 67.93 16.13 23.81 26.08 1,
et wn n = oa unonn| oam ibault Fi Michael Matena’ Karishma Malkan' Noah Fiedel
., o F Thibault Fevry ichael Matena arishma Malkan oah Fiede
dings
Tied encoder/decoder in- 248M 11T 3.55 2.192 £0.002 1840 TLTO0 17.72 24.34 26.49
put embeddin
Tied decoder input and out- 2480 1117 3 2.187 £0.007 1827 T4.86 17.74 24.87 26.67 N S h Z h h L 1’ Y - Zh W- - L.
it embeddi
%‘;ni:’tlo:m:‘l%xm 273IM 11T . X L1834 72.99 23.28 26,48 Oam azeer enz ong an anql ou e" l
Adaptive input embeddings 2040 9.2T . 2.2 002 1.899 66.57 16.21 24.07 26.66
Adaptive softmax 204M 927 1982 T2.91 16.67 2116 25.56
Adaptive softmax without 223M 10.5T 1914 TL.82 17.10 23.02 %72 . . 1,
-
bt e v e Nan Ding Jake Marcus Adam Roberts Colin Raffel
Lightweight convelution 1.989 7 1486

Evolved Transformer . 1863 73.67 1076
230021 1962 603 1497
21910010 1840 73.08 1696
218040007 1828 7425 1T
207M 04T 1.968 1539 23.55 26.42
2M 01T 2,009 1035 1956 26.44
202M 1207 1842 1T 2487 26.43
292M 1207 1828 75.24 1708 24.08 26,39
Universal Transformer M 4007 2.053 T3 108 1905 23.91
Mixture of experts B48M 1LTT 1785 74.55 1813 24.08
Switeh Transformer 1H00M 117T 1758 765.88 18.02 2619
el Transforme WM 19T 1918 1626
Weighted Transformer 28OM TLOT 1,989 16.98
Product key memory AZIM 386.6T 1798 765.16 1704 26.73

47

Parting remarks

e Pretraining on Tuesday!
e Good luck on assignment 4!
« Remember to work on your project proposal!

48

Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.
All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding
Common { hat > pizza (index)]
words learn > tasty (index)]
Variations { taaaaasty -> UNK (index)]
misspellings i laern > UNK (index)]
novel items Transformerify =2 UNK (index) 1

Word structure and subword models

Finite vocabulary assumptions make even /ess sense in many languages.
(]

Many languages exhibit complex morphology, or word structure.
* The effect is more word types, each occurring fewer times.

Non-finite forms

Form Positive Negative
o °1; Infinitive kuambia . kutéambia
xample: Swahili verbs can have .
. Positive form Slngl;l_lar Plural
Imperative ambia i ambieni
. o Habitual . huambia
Complex finite forms
undreds or conjugations, €ac . Persons e Classes
Bolanty 1st 2nd 3rd / M-wa M-mi Ma Ki-vi N u Ku Pa Mu
o o o Sg. Pl Sg. Pl Sg./1 PL/2 3 5 6 9 10 11/14 15/17 16 18
T - o - Past [less a]
e n CO I n g a WI e Va rl e y O Positive ~ fiiembia - tulambia - uliambia - miambie afambia | waliembia ulambia | ilambia liembia yaliambia kiiambia | viiambia | iiambia ziiambia uliambia pali fiambi
Negative sikuambia hatukuambia hukuambia hamkuambia hakuambia hawal;uamh\ haukuambia | haikuambia halikuambia hayak:ambl hakikuambia havik bia haik bia hazik bia hauk L hakukauambl hapal;uamhl hamul;uambl
1 m 1 , , Present [less Al
I n O r a I O n . e n S e I I I O O Positive nr:g:‘m?: tunaambia = unaambia mnaambia anaambia wanaambia unaambia inaambia linaambia bia ki bi bi inaambia zinaambia = unaambia kunasmbia panaambia munaambia
, ’ Negative siambii hatuambii huambii hamambii haambii hawaambii ~ hauambii haiambii haliambii hayaambii hakiambii haviambii haiambii haziambii hauambii hakuambii = hapaambii | hamuambii
o . o . . Future [less A]
Positive nitaambia | tutaambia bi bi bi utaambia itaambia litaambia yataambia = kitaambia = vitaambia itaambia zitaambia utaambia kutaambia = pataambia = mutaambia
e I n Ite n e SS’ n egat I O n ’ I n O rI I I at I O n Negative sitaambia hatutaambia hutaambia hamtaambia hataambia hawal:ambl hautaambia = haitaambia halif bia hay bia hakitaambia havil bia | haitaambia hazitaambia hautaambia hakutaambia hapataambia hamu;aamhl
Subjunctive [less Al
Positive niambie tuambie uambie mambis aambie waambie uambig iambie liambie yaambie kiambie viambie iambie ziambie uambie kuambie paambie muambie
. Negative nisi; i iambi iambi iambis iambis iambi i i isiambie lisiambie = yasiambie kisiambie visiambie isiambie zisiambie usiambie kusiambie = pasiambie = musiambie
apou e opnj|ec ++ Present Conditional fless A1
] Positive ningeambia tungeambia ungeambia mngeambia angeambia wangeambia ungeambia ingeambia i bi bia ki bi bia | ingeambia zingeambia ungeambia kungeambia pangeambia mungeambia
. ; |tusingeambi msingeambi wasingeamb || . : i i yasingeambi kisingeambi | visingeambi zisingeambi . i kusingeambi pasingeambi musingeamb
ogarve "SSP eigoampia B4 songeantia "8 ustgeanbis sgeambia Ishgeamiia Yo ARSI VRGP o py, SPERETS singeantiy FngeT "
singeambia M uni%eam ungeambia amn%eam i hangeambia awe;)ri\geam 4 aingeambia 5 ayar}geam g air azm%eam i 5 a ul}geam apal:igeam amub?ageam
- Past Conditional . [essa]
Positive liambia ur bia mngaliambia angaliambia wangihamlx ingaliambia lingaliambi yangaahamhl vingaliambia ingaliambia zingaliambia ungaliambia kungaahambl pangi\lambl mungaahamb\
e re’S a S a | | fra Cti n f th e Negative nisingigliamh tusinglgliamb using:liambi msing{:liamb asingiliambi v.'asirll)?:lliam usingiliambi ilsiqgalilz_lmbij |i5iﬂgi|iambi y blaw- e a- i v a-- "ﬁ;’]gsgﬁ;ﬁnﬂﬁ isiﬂgiliambi a.- bi k -bla‘. ‘bla & musingaliam
| I I I I () () . 5 . hatungaliam hungaliambi hamngaliam | liambi | b lia h liamk halingaliamb hakingaliam havingaliam hazingaliam hau liamb hakungaliam h li hamungalia
singaliambia h?a a b?a a mbia a " @ ia i bia bga b?a 2 b?a a b?a bia mbia
- Conditional Contrary to Fact — ~ [less a]
. . . Positive |ni liambia| ur bia mngeliambia angeliambia wangeallambl ; i | incaliambia | linaeliambi yangeaharnhl liambia vingeliambi liambia zingeliambia ungeliambia kungea\lamhl pangz\lambl munge;hamb\
— =
conjugations tor ambia — to tell. Gnomic fess a1
Positive naambia twaambia waambia = mwaambia aambia waambia waambia yaambia laambia yaambia chaambia vyaambia yaambia zaambia waambia kwaambia paambia | mwaambia
Perfect lless Al

[Wiktionary]

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

 The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
e At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

5 [Sennrich et al., 2016, Wu et al., 2016]

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding
Common hat - hat
words { learn > learn
Variations { taaaaasty - taa## aaa## sty
9
9

misspellings laern la#t#t erntttt
novel items Transformerify Transformer## ify

Outline

1.
2. Motivating model pretraining from word embeddings
3.

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:
“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
This quote is a summary of distributional semantics, and motivated word2vec. But:
“... the complete meaning of a word is always contextual,
and no study of meaning apart from a complete context
can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

Where we were: pretrained word embeddings

Circa 2017:
 Start with pretrained word embeddings (no y B
context!) g
* Learn how to incorporate context in an LSTM H*’I‘*I‘*I*’I _ Not pretrained

or Transformer while training on the task.

Some issues to think about: i i i i i i } pretrained
(word embeddings)
*

* The training data we have for our
downstream task (like guestion answering)
must be sufficient to teach all contextual
aspects of language.

... the movie was ...

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]
* Most of the parameters in our network are

randomly initialized!

Where we’re going: pretraining whole models

In modern NLP:

e All (or almost all) parameters in NLP
networks are initialized via pretraining.

* Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

H

— Pretrained jointly
<>

£

* This has been exceptionally effective at i i i i i —
building strong: ... the movie was ...

* representations of language

* parameter initializations for strong NLP

[This model has learned how to represent
models.

entire sentences through pretraining]
* Probability distributions over language that
we can sample from

10

What can we learn from reconstructing the input?

Stanford University is located in , California.

What can we learn from reconstructing the input?

| put _ fork down on the table.

What can we learn from reconstructing the input?

The woman walked across the street,
checking for traffic over shoulder.

What can we learn from reconstructing the input?

| went to the ocean to see the fish, turtles, seals, and

What can we learn from reconstructing the input?

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was .

What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.
Zuko left the

What can we learn from reconstructing the input?

| was thinking about the sequence that goes
1,1, 2,3,5, 8, 13, 21,

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(W;|wy..—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

e Train a neural network to perform language
modeling on a large amount of text. roh goes to make tasty tea

e Save the network parameters.

18

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh goes to make tasty tea ... the movie was ...

19

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

* Consider, provides parameters 6 by approximating mein Lpretrain(e).

* (The pretraining loss.)

* Then, finetuning approximates mein Leinetune (8), starting at 6.

* (The finetuning loss)

* The pretraining may matter because stochastic gradient descent sticks (relatively)
close to @ during finetuning.

* So, maybe the finetuning local minima near @ tend to generalize well!

« And/or, maybe the gradients of finetuning loss near 8 propagate nicely!

20

Lecture Plan

1.

2.

3. Model pretraining three ways
1. Encoders
2. Encoder-Decoders
3. Decoders

I 21

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

22

Encoders

Encoder-
Decoders

Decoders

Gets bidirectional context — can condition on future!
How do we train them to build strong representations?

Good parts of decoders and encoders?
What'’s the best way to pretrain them?

Language models! What we’ve seen so far.
Nice to generate from; can’t condition on future words

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

 @Gets bidirectional context — can condition on future!

Encoders _ , ,
« How do we train them to build strong representations?

23

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words. I

hi{,...,hy = Encoder(wy, ..., wr)
yi ~ Aw; + b

Only add loss terms from words that are
“masked out.” If X is the masked version of x,
we’re learning pg (x|X). Called Masked LM.

| [M] to the [M]

[Devlin et al., 2018]

24

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

* Predict a random 15% of (sub)word tokens. [Predict these!] went to store
* Replace input word with [MASK] 80% of the time ! ! !
* Replace input word with a random token 10% of Transformer
the time Encoder

* Leave input word unchanged 10% of the time (but
still predict it!) | | | | |
 Why? Doesn’t let the model get complacent and not I pizza to the [M]

build strong representations of non-masked words. / / I

(No masks are seen at fine-tuning time!)
[Replaced] [Notreplaced] [Masked]

25 [Devlin et al., 2018]

BERT: Bidirectional Encoder Representations from Transformers

* The pretraining input to BERT was two separate contiguous chunks of text:

4 ' N P
Input [CLS] 1 my dog is | cute | [SEP] he (likes ” play W ##ing] [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay EMing E[SEP]
+ + + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
o= o= o o o L -+ -+ -+ = L
Position
Embeddings E, E, E, E3 E, Es E6 E, Es E9 E10

e BERT was trained to predict whether one chunk follows the other or is randomly

sampled.
* Later work has argued this “next sentence prediction” is not necessary.

26 [Devlin et al., 2018, Liu et al., 2019]

BERT: Bidirectional Encoder Representations from Transformers

Details about BERT

 Two models were released:
* BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
 BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
* Trained on:
* BooksCorpus (800 million words)
* English Wikipedia (2,500 million words)
* Pretraining is expensive and impractical on a single GPU.
* BERT was pretrained with 64 TPU chips for a total of 4 days.
* (TPUs are special tensor operation acceleration hardware)
e Finetuning is practical and common on a single GPU

e “Pretrain once, finetune many times.”

27 [Devlin et al., 2018]

BERT: Bidirectional Encoder Representations from Transformers

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

 QQP: Quora Question Pairs (detect paraphrase * ColLA: corpus of linguistic acceptability (detect

questions) whether sentences are grammatical.)
* QNLI: natural language inference over questione STS-B: semantic textual similarity
answering data * MRPC: microsoft paraphrase corpus
* SST-2: sentiment analysis « RTE: a small natural language inference corpus
System MNLI-m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 86.0 617 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 79.8 90.4 36.0 73.3 849 56.8 71.0
OpenAl GPT 82.1/81.4 703 874 91.3 454 80.0 823 56.0 75.1
BERTgAsE 84.6/83.4 712 905 93.5 52.1 85.8 889 66.4 79.6
BERT, arGE 86.7/85.9 721 927 94.9 60.5 86.5 893 70.1 82.1

28 [Devlin et al., 2018]

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

If your task involves generating sequences, consider using a pretrained decoder; BERT and other

pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

make/brew/craft goes to make tasty tea END

(S Y S —

Pretrained Decoder

Iroh goes to [MASK] tasty tea Iroh goes make tasty tea

29

Extensions of BERT

You'll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:
 RoOBERTa: mainly just train BERT for longer and remove next sentence prediction!

e SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

It’s bly irrd# esittt stit# bly
t t

BERT SpanBERT

: : It’

30

[Liu et al., 2019; Joshi et al., 2020]

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

SQuAD

Model data bsz steps v1.1/2.0)

MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB SK 100K 93.6/87.3 89.0 05.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 893 095.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT arce

with BOOKS + WIKI I13GB 256 IM 90.9/81.8 86.6 93.7

31 [Liu et al., 2019; Joshi et al., 2020]

Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive.
But lightweight finetuning methods adapt pretrained models in a constrained way.
Leads to less overfitting and/or more efficient finetuning and inference.

Full Finetuning Lightweight Finetuning
Adapt all parameters Train a few existing or new parameters

©/® ©/®

er,

... the movie was the movie was ...
32 [Liu et al., 2019: Joshi et al., 2020]

Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.

The prefix is processed by the model just like real words would be.
Advantage: each element of a batch at inference could run a different tuned model.

©/®

... the movie was ...

Learnable prefix

parameters
[Li and Liang, 2021: Lester et al., 2021]

33

Parameter-Efficient Finetuning: Low-Rank Adaptation

Low-Rank Adaptation Learns a low-rank “diff” between the pretrained and finetuned
weight matrices.

Easier to learn than prefix-tuning.

B €]kad

©/®

Each weight matrix

W + AB
... the movie was ...
I 34

[Hu et al., 2021]

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

g Encoder- * Good parts of decoders and encoders?
>=EQ Decoders °* What's the best way to pretrain them?

35

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

WT_|_2, “en

hi, ..., hy = Encoder(wy, ..., wr)
hriq,...,hy = Decoder(wy, ...,wp, hq, ..., h1)
Vi NAhi+b,i>T

The encoder portion benefits from @%

bidirectional context; the decoder portion is Wri1, ooy Wor
used to train the whole model through

language modeling.

W1, ..., Wt

[Raffel et al., 2018]

36

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Targets

: : <X> for inviting <v> last <z>
Replace different-length spans from the input

with unique placeholders; decode out the
spans that were removed!

Original text

Thank iti t rt K. [%]
ank you fef ij]?lﬁn’gf,me O your pa yl%siwee

This is implemented in text
preprocessing: it’s still an objective

that looks like language modeling at P! ¥ v
the decoder side. Thank you <x> me to your party <> week.

37

Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 3982 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27 39.17 26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62 39.17 27.05
Enc-dec, 6 layers LM P M/2 T8.67 18.26 75.32 64.06 26.13 38.42 26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 34.31 25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51 26.76

Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
guestions, retrieving
knowledge from its
parameters.

NQ: Natural Questions
WQ: WebQuestions
TQA: Trivia QA

All “open-domain”
versions

Pre-training

Fine-tuning

When was Franklin D.
Roosevelt born?

President Franklin D.
Roosevelt was born
in January 1882.

1882 I

NQ WQ TQA
dev test

Karpukhin et al. (2020) 41.5 424 579 -
T5.1.1-Base 257 282 242 30.6 220millionparams
T5.1.1-Large 273 295 285 37.2 770million params
T5.1.1-XL 205 324 36.0 45.1 3 billion params
T5.1.1-XXL 32.8 356 429 525 11billion params
T5.1.1-XXL + SSM 352 428 519 61.6

[Raffel et al., 2018]

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

e Language models! What we’ve seen so far.
L 222271 Decoders , , N
* Nice to generate from; can’t condition on future words

* All the biggest pretrained models are Decoders.
40

Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model p(w;|wq.t_1).

We can finetune them by training a classifier
on the last word’s hidden state.

h{,...,hy = Decoder(wy, ..., wy)

Where A and b are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

41

@/@?
Linear A4,D
|
hy, o by

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their pg(W;|wy.4—1)!

This is helpfgl in tasks where -the outputis a Wy Ws W, Ws Wg
sequence with a vocabulary like that at t t t t el A b
pretraining time!

* Dialogue (context=dialogue history)

* Summarization (context=document) MT

h{,..,hr = Decoder(wy,...,wr)
we ~Ahi_1 + Db Wi Wy W3 Wy Ws

, , [Note how the linear layer has been pretrained.]
Where A, b were pretrained in the language

model!
42

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

43

Transformer decoder with 12 layers, 117M parameters.
768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges
Trained on BooksCorpus: over 7000 unique books.
* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

[Devlin et al., 2018]

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral
Premise: The man is in the doorway ,

_ _ entailment
Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.
Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

44

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 833

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7

Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

45

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

MNow, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

