

Natural Language Processing

Summary

Pavel Rychlý

11 Dec 2023

Pavel Rychlý • Natural Language Processing • 11 Dec 2023

Problems with NLP

- Problems with NLP
 - Zipf's law
 - Ambiguity
 - Variability
- Approaches
 - symbolic (rule-based)
 - no data available
 - statistical
 - neural (deep learning)
 - huge data available

Statistical NLP

counts

- keywords
- collocations, multi-word units
- language modeling

Language Modeling

- probability of senteces, chain rule
- n-grams, Markov's assumption

 $p(W) = \prod_i p(w_i | w_{i-2}, w_{i-1})$

- maximum-likelihood estimation gives zero probabilities
- smoothing
- evaluation using cross entropy, perplexity

Text Classification

- applications
- Naive Bayes Classifier
- evaluation:
 - precision
 - recall
 - accuracy

Continuous Space Reprasentation

- words as vectors, word embeddings
- methods of learning vectors
- evaluation of words embeddings
- optional homework: Stability of word embeddings

HW: Stability of word embeddings

Choose one or more methods for creating word embeddings (word2vec, FastText, GloVe, ...), run the traning on same data with different parameters (and/or epochs), evaluation stability.

Stability can be computed in several ways:

- 1. How many pair similarities are same. It can be computed on the whole vocabulary on a sample (for example: 10 words with frequences from [100, 400, 1600, 6400, 25600, ...]).
- 2. Percentage of changes in analogy tasks. Same percentage in the taks doesn't mean the same succesful analogy items. Calculate how many items changed successful/unsuccessful estimation.
- 3. Percentage of changes in the Outlier Detection task

Neural Networks

- structure of NN
- matrix representation
- activation functions
- NN training
 - stochastic gradient descent
 - backpropagation
- sub-word tokenization
 - opt. hw: subword coverage

Recurrent NN

- language modeling using NN
- training RNN
- problems in training RNN
- LSTM
- Bidirectional, multi layer RNN

Simple NLP using NN

- Named Entity Recognition (NER)
- language modeling
- training
- evaluation
- opt. hw: NN for adding accents

Machine translation

- sequence to sequence RNN
- attention
- decoding, beam search
- MT evaluation: BLEU, ChrF++

encoder, decoder

encoding positon

attention structure

Pretrained models

- Encoder only
- Decoder only
- Encoder-decoder
- training objectives
- BERT, GPT, T5

Question Answering

- usage
- reading comprehension
- applying NN for QA

Recipe for Training NN

- NN training fails silently
- 1. Become one with the data
- 2. Set up the end-to-end training/evaluation skeleton + get dumb baselines
- 3. Overfit
- 4. Regularize
- 5. Tune
- 6. Squeeze out the juice

Where to start

- Hugging Face
 - models
 - code
 - pre-trained, ready to use
 - datasets
 - sometimes with evaluaton
- transformers library
 - very complex
 - 3 implementations: Jax, PyTorch, TensorFlow

Pre-trained models

OpenLLM

Ilama.cpp

run the LLaMA model using 4-bit integer quantization on a MacBook

optimizations

- float16, bfloat16
- quantization

Training from scratch

nanoGPT

easy to read

minimal dependencies

nanoT5

train T5 on 1xA100 GPU in less than 24 hours