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Accenture Labs 
BioInnovation
• Enable enhanced diagnostics and treatments, including 

novel therapeutics. 
• Advance understanding of disease mechanisms and the 

effects of environmental factors. 
• Deliver leaner and more effective multi-omics-driven drug 

discovery.

Current R&D agenda:

• AI for Pre-clinical Drug Discovery
• Biodata and ML for Genomic Medicine
• AI for Synthetic Biology

Core technologies: Biodata, Machine Learning, 
Knowledge Graphs, & Graph ML,
Explainable AI, LLMs



Knowledge Graphs 
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In-depth overview of Knowledge Graphs in
[Hogan et al. 2020]
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Machine Learning on Knowledge Graphs: Tasks
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LINK PREDICTION /
TRIPLE CLASSIFICATION
• Knowledge graph completion
• Content recommendation
• Knowledge discovery

COLLECTIVE NODE 
CLASSIFICATION / 
LINK-BASED CLUSTERING
• Customer segmentation

ENTITY MATCHING
• Duplicate detection
• Inventory items deduplication

[Nickel et al. 2016a]
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[Pai et al. 2022]
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LINK PREDICTION /
TRIPLE CLASSIFICATION
• Knowledge graph completion
• Content recommendation
• Question answering

isA

Acme  Inc

Person

isA

worksFor

friendWith

George

likes

FootballTeam

worksFor

Liverpool FC

Liverpool

isA

basedIn City

Mike isA

bornIn

?
basedIn

Link Prediction
• Learning to rank problem
• Information retrieval metrics
• No ground truth negatives in test set 

required

Triple Classification
• Binary classification task 
• Binary classification metrics
• Test set requires positives and ground truth 

negatives

Assigning a score proportional to the likelihood that 
an unseen triple is true.
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Graph Representation Learning
Learning representations of nodes and edges

Node Representation/Graph Feature based Methods
PRA, LINE, DeepWalk, node2vec

Graph Neural Networks (GNNs)
GCNs, Graph Attention Networks

Knowledge Graph Embeddings (KGE)
TransE, DistMult, ComplEx, ConvE
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Downstream 
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Scope of this 
tutorial

For a complete overview of 
graph feature-based models 
and GNNs:
[Hamilton & Sun 2019]
[Hamilton 2020]



Knowledge Graph Embeddings (KGE)
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Automatic, supervised learning of embeddings, i.e. projections of 
entities and relations into a continuous low-dimensional space ℝ".
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KGE Design Rationale: Capture KG Patterns
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Symmetry <Alice marriedTo Bob>

Asymmetry <Alice childOf Jack>

Inversion
<Alice childOf Jack>

<Jack fatherOf Alice>

Composition
<Alice childOf Jack>

<Jack siblingOf Mary>
<Alice nieceOf Mary>

But also:
• Hierarchies
• Type constraints
• Transitivity
• Homophily
• Long-range dependencies
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Popular KGE models in recent published literature

TransE 
(Bordes et al., 2013) 

RESCAL 
(Nickel et al., 2011)

DistMult 
(Yang et al., 2014) 

ComplEx 
(Trouillon et al., 2016) 

ConvE 
(Dettmers et al., 2017) 

ComplEx-N3 
(Lacroix et al., 2018) 

RotatE 
(Sun et al., 2019) 

NodePiece 
(Galkin et al., 2021) 

NBFNet 
(Zhu et al., 2022) 



At a Glance
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Anatomy of a Knowledge Graph Embedding Model
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(Translation-based, Factorization-based, Deep)
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[Bordes et al. 2013]

Translation-based Scoring Functions

High score = triples is very likely to be factually correct



Translation-based Scoring Functions 

• RotatE: relations modelled as rotations in complex space ℂ: element-
wise product between complex embeddings.
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[Sun et al. 2019]



Factorization-based Scoring  Functions

• RESCAL: low-rank factorization with tensor product

• DistMult: bilinear diagonal model. Dot product.

• ComplEx: Complex Embeddings (Hermitian dot product):
(i.e. extends DistMult with dot product in ℂ)
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[Trouillon et al. 2016]

[Yang et al. 2015]

[Nickel et al. 2011]



“Deeper” Scoring  Functions

• ConvE: reshaping + convolution 

• ConvKB: convolutions and dot product
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[DePmers et al. 2017]

2D reshaping Linear 
convolution

Non-linearity

Computa:onally expensive!

[Nguyen et al. 2018]



Other Recent Models
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[Balaževic  ́et al. 2019]

[Zhang  et al. 2019]

[Kazemi  et al. 2018]

[Nickel  et al. 2016]• HolE
• SimplE
• QuatE
• MurP
• NodePiece
• NBFNet
• …

[Galkin  et al. 2021]

[Zhu  ́et al. 2022]



Pairwise Margin-Based Hinge Loss
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Score 
assigned to a 

synthetic 
negative

Score 
assigned to 
true triple

Pays a penalty if score of positive triple < score of synthetic negative by a margin 𝛾

[Bordes et al. 2013]



25

Negatives Generation

Where do negative examples come from? (i.e. false facts)

“Local Closed-World” Assumption: the KG is only locally complete 
“Corrupted” versions of a triple as synthetic negatives:

“corrupted subject” “corrupted” object

The predicate is 
unaltered
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Synthetic Negatives: Example



Optimizer: learn optimal parameters (e.g. embeddings). Off-the-shelf SGD variants: 
(AdaGrad, Adam)

Reciprocal Triples
Injection of reciprocal triples in training set. 
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Training Procedure 
and Optimizer

<Alice childOf Jack>
<Jack childOf-1 Alice>

[DePmers et al. 2017]
[Lacroix et al. 2018]



Performance Evaluation
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LINK PREDICTION /
TRIPLE CLASSIFICATION
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Link Prediction
• Learning to rank problem
• Information retrieval metrics
• No ground truth negatives in test set required

Triple Classification
• Binary classification task 
• Binary classification metrics
• Test set requires positives and ground truth 

negatives

Assigning a score proportional to the likelihood that 
an unseen triple is true.

Learning–To-Rank problem:
How well are positive triples ranked against synthetic negatives built under 
the Local Closed World Assumption.

Same procedure 
used in training



Evaluation Metrics

Mean Rank (MR)

Mean Reciprocal Rank (MRR)

Hits@N

30
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Example: How unseen, test positive triples rank against synthetic negatives? (four negatives/positive)

Positive triples from test set
Test set = {
<Mike friend_with George>
<Mike born_in Liverpool>
}



TRUSTING PREDICTIONS: CALIBRATION
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● Mistrust in model discoveries
● Poor Interpretability in high-stakes scenarios (i.e. drug-target discovery)

Probabilities Generated by off-the-shelf KGE models are uncalibrated! 

[Tabacof & Costabello ICLR 2020]

Calibration is 
effective!

🙂

Probabilities returned 
by off the shelf models 

do not match  the 
actual fraction of 

positives! 

☹

Can we calibrate KGE models? Yes, and that leads to more trustworthy and interpretable predictions.
 

arXiv:1912.10000



EXPLAINING PREDICTIONS
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arXiv:2310.01065

Pre-trained 
Black Box KGE 

model

KGEx

1 Guy Ritchie directed Sherlock Holmes

2 Guy Ritchie married Madonna

3 Madonna profession Film Producer

Guy Ritchie profession Film Director

Explanation

KGE 
student

1. Subgraph 
   Sampling

2. Knowledge 
    Distillation

3. Monte
    Carlo

𝑓( ) = 0.85

Target triple 
to explain

Top Ranked Triple in the 
Explanation = Most Important

[Baltatzis & Costabello LoG-2023] [Janik & Costabello LoG-2023]

arXiv:2212.02651



MULTIMODAL KNOWLEDGE GRAPHS
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Many real-world 
graphs include 
multi-modal 
attributes.

description

image

capitalOf

Ireland

Dublin

1.38M
population

Dublin (/ˈdʌblᵻn/, Irish: Baile Átha Cliath [blʲaːˈklʲiəh]) is the capital 
and largest city of Ireland. Dublin is in the province of Leinster on 
Ireland's east coast, at the mouth of the River Liffey. The city has an 
urban area population of 1,345,402. The population of the Greater 
Dublin Area, as of 2016, was 1,904,806 people. Founded as a Viking 
settlement, the Kingdom of Dublin became Ireland's principal city 
following the Norman invasion. The city expanded rapidly from the 
17th century and was briefly the second largest city […]

founded

841 A.D.

[Gesese et al. 2019] surveys recent literature
[Pezeshkpour et al. 2018]



MULTIMODAL KNOWLEDGE GRAPHS

Many real-world 
graphs includes 
numeric information 
on edges (e.g. 
“strength”)
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[Pai & Costabello IJCAI-21]

arXiv:2105.08683



TEMPORAL KNOWLEDGE GRAPHS

Many real-world 
graphs represents 
timestamped 
concepts.

36

consult
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visit
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Xi Jinping

Russian Military

Barack 
Obama

2014-03-28

2014-02-18

Angela Merkel

express intent to 
cooperate

2014-08-25

2014-08-29

Timestamped edge

TA-DistMult 
[García-Durán et al. 2018]

TTransE 
[Jiang et al. 2016]

ConT 
[Ma et al. 2020]

DE-SimplE 
[Goel et al. 2020]

TNTComplEx 
[Lacroix et al. 2020]



ROBUSTNESS TO ADVERSARIAL ATTACKS
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[Bhardwaj EMNLP-21]
[Bhardwaj ACL-21]



NEURAL GRAPH DATABASES: MULTI HOP QUESTION ANSWERING

[Arakelyan et al ICLR 2021 ]



LLM-KGE Interplay: Joint embeddings

End-to-end architectures that “fuse” text embeddings with graph 
embeddings to increase predictive power

[Yasunaga et al 2022]



OPEN SOURCE PYTHON LIBRARY 
FOR GRAPH REPRESENTATION 
LEARNING WITH KNOWLEDGE 
GRAPH EMBEDDINGS

Collective Entity 
Matching

Link-based Clustering

Link Prediction
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ampligraph.org
pip install ampligraph



INDUSTRIAL APPLICATIONS AT ACCENTURE LABS BIOINNOVATION
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Oncology 
Early Lung cancer 
patients relapse 
prediction

Pharma 
Drug-Target Interaction 
Discovery 



DRUG DEVELOPMENT
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kge-tutorial-ecai2020.github.io

ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice

Target 
Identification

Target 
Validation

Pre Clinical 
Trials

Human Clinical 
Trials

Regulatory 
Approvals and 
Manufacturing

7 - 15 years

Pharma 
Drug-Target Interaction 
Discovery 



?
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Drug Targets 101

.

.

.

Problem: 21k+ 
Genes to Choose 

From!

Knowledge 
Graphs and 

GraphML To The 
Rescue

We Use KGEs to 
Rank Order 
Genes by 

Importance

Impact

Success rate of 77% in 
identifying known gene-
headache associations.

80% faster than traditional 
methods

How to find  
genes that 

express 
promising  
targets?

Pharma 
Drug-Target Interaction 
Discovery 



Black-box 
AI System

Explanation Sub-system

Input Data Explanation

!"
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Paaent 9714186
hasProgressionRelapse

ProgressionRelapse

0.72

Predictive 
Model

ŷ

Oncology 
Lung cancer patients 
relapse prediction

hGps://www.clarify2020.eu/
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