
Collision detection and response in
the assignment

Marek Trtík

PA199

2

 Position of the ball: 𝐩 = 𝐩𝑥, 𝐩𝑦, 𝑟
⊤

,

where 𝑟 is the radius of the sphere.

 If 𝐩 − 𝑟 > 𝑟𝑔 then GAME OVER.

 If 𝐩 + 𝑟 ≥ 𝑟𝑝 −𝑤𝑝 ∧ 𝐩 − 𝑟 ≤ 𝑟𝑝 + 𝑤𝑝

then “broad phase with paddles”.

 If 𝐩 + 𝑟 ≥ 𝑟𝑏 − 𝑤𝑏 ∧ 𝐩 − 𝑟 ≤ 𝑟𝑏 +𝑤𝑏

then “broad phase with bricks”.

 Otherwise, no collision.

Collision detection: Broad phase

𝑟𝑏
𝑟𝑝

𝑟𝑔

𝑂
𝜃𝑝𝜃

𝐩𝑤𝑝

𝑤𝑏

𝜑𝑝

3

Collision detection: Broad phase

𝑟𝑏
𝑟𝑝

𝑟𝑔

𝑂
𝜃𝑝𝜃

𝐩𝑤𝑝

𝑤𝑏

𝜑𝑝

Colliding with Paddles (brick wall case is similar)

def broad_phase(positions,𝑤𝑝,𝜑𝑝):

 𝑟𝑝, 𝜃𝑝= positions[0]

 for 𝑟𝑝
′, 𝜃𝑝

′ in positions[1:]:

 if min_difference(𝜃, 𝜃𝑝
′)

 < min_ difference(𝜃, 𝜃𝑝):

 𝑟𝑝, 𝜃𝑝= 𝑟𝑝
′, 𝜃𝑝

′

 if min_difference(𝜃, 𝜃𝑝) ≤ 𝜑𝑝:

 return narrow_phase_case_1(𝐩, 𝑟𝑝)

 else

 return narrow_phase_case_2(𝐩,𝑟,𝜃,𝑟𝑝,𝜃𝑝,𝑤𝑝,𝜑𝑝)

4

 Case 1: “min_difference(𝜃, 𝜃𝑝) ≤ 𝜑𝑝”.

 def narrow_phase_case_1(𝐩, 𝑟𝑝):

 𝐧 = 𝐩 / |𝐩|

 return -𝐧 if |𝐩| < 𝑟𝑝 else 𝐧

Collision detection: Narrow phase

𝑂

𝜃

x

y 𝐩

𝜃𝑝

𝜑𝑝

−
𝐩

|𝐩|
= 𝐧

𝐩

𝐩

|𝐩|
= 𝐧

𝑟𝑝

5

 Case 2: “min_difference(𝜃, 𝜃𝑝) > 𝜑𝑝”.

 def narrow_phase_case_2(𝐩,𝑟,𝜃,𝑟𝑝,𝜃𝑝,𝑤𝑝,𝜑𝑝):

 sign = 1 if on_left(𝜃, 𝜃𝑝 + 𝜑𝑝) else -1

 𝑨 = to_cartesian(𝑟𝑝-𝑤𝑝, 𝜃𝑝 + sign*𝜑𝑝)

 𝑩 = to_cartesian(𝑟𝑝+𝑤𝑝, 𝜃𝑝 + sign*𝜑𝑝)

 ෝ𝒒 = closest_point_on_line(𝑨𝑩, 𝐩)

 return 𝐩 − ෝ𝒒 / |𝐩 − ෝ𝒒| if 𝐩 − ෝ𝒒 ∈ (0, ۧ𝑟 else None

Collision detection: Narrow phase

𝑟𝑝

𝑂
𝜃

x

y

𝜃𝑝

𝜑𝑝

𝐩

𝐩 − ෝ𝒒

𝐩 − ෝ𝒒
= 𝐧

ෝ𝒒

𝑩

𝑤𝑝

𝑨

6

𝐧

𝐯𝑝

 Ball’s velocity: 𝐯 = 𝑣𝑥 , 0, 𝑣𝑧
⊤, 𝐯 = 𝑣0,

where 𝑣0 is the fixed speed.

 We have the unit collision normal

𝐧 = 𝑛𝑥, 𝑛𝑦, 0 , 𝐧 = 1

from the collision detection.

 Velocity of a paddle is 𝐯𝑝.

Collision response

𝐯

𝐩

7

Collision response

𝐯𝑝

𝐯

𝐧

We can model

the situation as

𝐯

𝐩

𝐧

𝐯𝑝
Compute the

relative velocity

8

Collision response

−𝐯𝑝

𝐯

𝐧

Δ𝐯

𝐧

Δ𝐯

Δ𝐯𝑡

Δ𝐯𝑛

Decompose Δ𝐯

IMPORTANT

Continue only if

Δ𝐯 ⋅ 𝐧 < 0

Δ𝐯𝑛 = 𝐧 ⋅ Δ𝐯 𝐧

Δ𝐯𝑡 = Δ𝐯 − Δ𝐯𝑛

9

Δ𝐯𝑡
′ “Bounce of the paddle” velocity change:

Δ𝐯𝑛
′ = −2Δ𝐯𝑛

 “Match paddle’s velocity” velocity change:

Δ𝐯𝑡
′ = −𝜇𝑝min Δ𝐯𝑛 , Δ𝐯𝑡

Δ𝐯𝑡

|Δ𝐯𝑡|
, if Δ𝐯𝑡 > 0,

where 0 ≤ 𝜇𝑝 ≤ 1 is a “friction” coefficient.

 So, the collision response velocity is:
𝐯𝑟𝑒𝑠 = 𝐯 + Δ𝐯𝑛

′ + Δ𝐯𝑡
′

 The final velocity is then:

𝐯 ≔ 𝑣0
𝐯𝑟𝑒𝑠

𝐯𝑟𝑒𝑠
, NOTE: 𝐯𝑟𝑒𝑠 > 0.

Collision response

Δ𝐯𝑛
′𝐯𝑟𝑒𝑠

Δ𝐯𝑡

Δ𝐯𝑛
𝐯

10

 Polar coordinates:

 Always normalize the angles to the range 0ۦ, 2𝜋) before comparison.

 Consider using normalization directly in:

Conversion from the Cartesian to polar coordinates.

Operators for addition and subtraction of angles.

 Alternatively, in comparison operators.

 Otherwise, assert angles are normalized before comparisons.

 When implementing angle comparison algorithm, keep in mind the case

of passing the polar axis (in CW or CCW direction).

Implementation notes

11

 Recommendations:

 Build tests and test scenes for collision detection and response

algorithms.

=> Do not build the complete scene of the game (all paddles all wall

bricks).

=> Test function “closest_point_on_line” is different situations

(configurations of line’s points and the reference point).

=> Test all phases of the collision detection in separate test scenes.

=> Test collison response in separate test scenes (for different velocities

of the ball and the paddle).

Implementation notes

	Slide 1: Collision detection and response in the assignment
	Slide 2: Collision detection: Broad phase
	Slide 3: Collision detection: Broad phase
	Slide 4: Collision detection: Narrow phase
	Slide 5: Collision detection: Narrow phase
	Slide 6: Collision response
	Slide 7: Collision response
	Slide 8: Collision response
	Slide 9: Collision response
	Slide 10: Implementation notes
	Slide 11: Implementation notes

