
Collision detection and response in 
the assignment

Marek Trtík

PA199



2

 Position of the ball: 𝐩 = 𝐩𝑥, 𝐩𝑦, 𝑟
⊤

,       

where 𝑟 is the radius of the sphere.

 If 𝐩 − 𝑟 > 𝑟𝑔 then GAME OVER.

 If 𝐩 + 𝑟 ≥ 𝑟𝑝 −𝑤𝑝 ∧ 𝐩 − 𝑟 ≤ 𝑟𝑝 + 𝑤𝑝 

then “broad phase with paddles”.

 If 𝐩 + 𝑟 ≥ 𝑟𝑏 − 𝑤𝑏 ∧ 𝐩 − 𝑟 ≤ 𝑟𝑏 +𝑤𝑏 

then “broad phase with bricks”.

 Otherwise, no collision.

Collision detection: Broad phase

𝑟𝑏
𝑟𝑝

𝑟𝑔

𝑂
𝜃𝑝𝜃

𝐩𝑤𝑝

𝑤𝑏

𝜑𝑝



3

Collision detection: Broad phase

𝑟𝑏
𝑟𝑝

𝑟𝑔

𝑂
𝜃𝑝𝜃

𝐩𝑤𝑝

𝑤𝑏

𝜑𝑝

# Colliding with Paddles (brick wall case is similar)

def broad_phase(positions,𝑤𝑝,𝜑𝑝):

 𝑟𝑝, 𝜃𝑝= positions[0]

 for 𝑟𝑝
′, 𝜃𝑝

′  in positions[1:]:

  if min_difference(𝜃, 𝜃𝑝
′ )

    < min_ difference(𝜃, 𝜃𝑝):

   𝑟𝑝, 𝜃𝑝= 𝑟𝑝
′, 𝜃𝑝

′

 if min_difference(𝜃, 𝜃𝑝) ≤ 𝜑𝑝:

  return narrow_phase_case_1(𝐩, 𝑟𝑝)

 else

  return narrow_phase_case_2(𝐩,𝑟,𝜃,𝑟𝑝,𝜃𝑝,𝑤𝑝,𝜑𝑝)



4

 Case 1: “min_difference(𝜃, 𝜃𝑝) ≤ 𝜑𝑝”.

 def narrow_phase_case_1(𝐩, 𝑟𝑝):

  𝐧 = 𝐩 / |𝐩|

  return -𝐧 if |𝐩| < 𝑟𝑝 else 𝐧

Collision detection: Narrow phase

𝑂

𝜃

x

y 𝐩

𝜃𝑝

𝜑𝑝

−
𝐩

|𝐩|
= 𝐧

𝐩

𝐩

|𝐩|
= 𝐧

𝑟𝑝



5

 Case 2: “min_difference(𝜃, 𝜃𝑝) > 𝜑𝑝”.

 def narrow_phase_case_2(𝐩,𝑟,𝜃,𝑟𝑝,𝜃𝑝,𝑤𝑝,𝜑𝑝):

  sign = 1 if on_left(𝜃, 𝜃𝑝 + 𝜑𝑝) else -1

  𝑨 = to_cartesian(𝑟𝑝-𝑤𝑝, 𝜃𝑝 + sign*𝜑𝑝)

  𝑩 = to_cartesian(𝑟𝑝+𝑤𝑝, 𝜃𝑝 + sign*𝜑𝑝)

  ෝ𝒒 = closest_point_on_line(𝑨𝑩, 𝐩)

  return 𝐩 − ෝ𝒒 / |𝐩 − ෝ𝒒| if 𝐩 − ෝ𝒒 ∈ (0, ۧ𝑟  else None

Collision detection: Narrow phase

𝑟𝑝

𝑂
𝜃

x

y

𝜃𝑝

𝜑𝑝

𝐩

𝐩 − ෝ𝒒

𝐩 − ෝ𝒒
= 𝐧

ෝ𝒒

𝑩

𝑤𝑝

𝑨



6

𝐧

𝐯𝑝

 Ball’s velocity: 𝐯 = 𝑣𝑥 , 0, 𝑣𝑧
⊤, 𝐯 = 𝑣0, 

where 𝑣0 is the fixed speed.

 We have the unit collision normal            

𝐧 = 𝑛𝑥, 𝑛𝑦, 0 , 𝐧 = 1

from the collision detection.

 Velocity of a paddle is 𝐯𝑝.

Collision response

𝐯

𝐩



7

Collision response

𝐯𝑝

𝐯

𝐧

We can model 

the situation as

𝐯

𝐩

𝐧

𝐯𝑝
Compute the 

relative velocity



8

Collision response

−𝐯𝑝

𝐯

𝐧

Δ𝐯

𝐧

Δ𝐯

Δ𝐯𝑡

Δ𝐯𝑛

Decompose Δ𝐯

IMPORTANT

Continue only if  

Δ𝐯 ⋅ 𝐧 < 0

Δ𝐯𝑛 = 𝐧 ⋅ Δ𝐯 𝐧

Δ𝐯𝑡 = Δ𝐯 − Δ𝐯𝑛



9

Δ𝐯𝑡
′ “Bounce of the paddle” velocity change:

Δ𝐯𝑛
′ = −2Δ𝐯𝑛

 “Match paddle’s velocity” velocity change:

Δ𝐯𝑡
′ = −𝜇𝑝min Δ𝐯𝑛 , Δ𝐯𝑡

Δ𝐯𝑡

|Δ𝐯𝑡|
,     if Δ𝐯𝑡 > 0,

where 0 ≤ 𝜇𝑝 ≤ 1 is a “friction” coefficient.

 So, the collision response velocity is:
𝐯𝑟𝑒𝑠 = 𝐯 + Δ𝐯𝑛

′ + Δ𝐯𝑡
′

 The final velocity is then:

𝐯 ≔ 𝑣0
𝐯𝑟𝑒𝑠

𝐯𝑟𝑒𝑠
,     NOTE: 𝐯𝑟𝑒𝑠 > 0.

Collision response

Δ𝐯𝑛
′𝐯𝑟𝑒𝑠

Δ𝐯𝑡

Δ𝐯𝑛
𝐯



10

 Polar coordinates:

 Always normalize the angles to the range 0ۦ, 2𝜋) before comparison.

 Consider using normalization directly in:

Conversion from the Cartesian to polar coordinates.

Operators for addition and subtraction of angles.

 Alternatively, in comparison operators.

 Otherwise, assert angles are normalized before comparisons.

 When implementing angle comparison algorithm, keep in mind the case 

of passing the polar axis (in CW or CCW direction).

Implementation notes



11

 Recommendations:

 Build tests and test scenes for collision detection and response 

algorithms.

=> Do not build the complete scene of the game (all paddles all wall 

bricks).

=> Test function “closest_point_on_line” is different situations 

(configurations of line’s points and the reference point).

=> Test all phases of the collision detection in separate test scenes.

=> Test collison response in separate test scenes (for different velocities 

of the ball and the paddle).

Implementation notes


	Slide 1: Collision detection and response in the assignment
	Slide 2: Collision detection: Broad phase
	Slide 3: Collision detection: Broad phase
	Slide 4: Collision detection: Narrow phase
	Slide 5: Collision detection: Narrow phase
	Slide 6: Collision response
	Slide 7: Collision response
	Slide 8: Collision response
	Slide 9: Collision response
	Slide 10: Implementation notes
	Slide 11: Implementation notes

