Collision detection and response in
the assighment

Marek Trtik
PA199

Collision detection: Broad phase

» Position of the ball: p = (py, py7)
where r is the radius of the sphere.

» If |p| —7 > 1, then

> Iflpl+r=r,—w,Alpl—1T<1r,+w,
then “broad phase with paddles”.

» Iflpl+r=2rn—w,Alpl—7r <1, +w,
then “broad phase with bricks”.

» Otherwise,

Collision detection: Broad phase

Colliding with Paddles (brick wall case is similar)
def broad_phase(positions,w,,¢,):

1, 8,= positions[O]
for r;, 8, In positions[1:]:
It min_difference(6, 0,))

< min_ difference(6,6,):

Tp) Op= T, Op
if min_difference(0,60,) < ¢,,:
return narrow_phase_case_1(p., 7,)

else
return narrow_phase_case_2(p.r.0,7,,0, W, .¢,) ~~_ TT==---

Collision detection: Narrow phase

» Case 1: “min_difference(6,0,) < ¢,".

def narrow_phase_case_1(p, 7,):

=p/Ip|
return -n if |p| <, else

Collision detection: Narrow phase

» Case 2: "min_difference(6,0,) > ¢,".

def narrow_phase_case_2(p.r.0.7,.0, .w,,¢,):
sign =1 if on_left(6, 8, + ¢,) else -1
A = to_cartesian(n,-w,, 6, + sign*e,)

B = to_cartesian(r,+w,, 6, + sign*p,)

g = closest_point_on_line(AB, p)
return (p—q) /|p—1q|if|p—q| € (0,r) else None

Collision response

» Ball's velocity: v = (v,,0,v,) 7, |[v] = v,
where v, is the fixed speed.

» We have the unit collision normal

= (nx,ny,0), In| = 1

from the collision detection.

» Velocity of a paddle is v,,.

Collision response

p We can model Vv Compute the
p the situation as relative velocity

I I

Collision response

Decompose Av

IMPORTANT
Continue only if

Av- 1 <0

Collision response

» “Bounce of the paddle” velocity change:

= —2

» “Match paddle’s velocity” velocity change:
I . JA\ ¥ .

AV = —pymin{] | 1Ave [} if [Ave] > 0,

where 0 < 1, < 1is a "friction” coefficient.

» So, the collision response velocity is:
Vyes = V + + Av/

» The final velocity is then:
V= v, l:resl , NOTE: |v,..s| > 0.

VTBS

Implementation notes

» Polar coordinates:
» Always normalize the angles to the range (0, 2m) before comparison.
» Consider using normalization directly in:

» Conversion from the Cartesian to polar coordinates.
» Operators for addition and subtraction of angles.
» Alternatively, in comparison operators.
» Otherwise, assert angles are normalized before comparisons.

» When implementing angle comparison algorithm, keep in mind the case
of passing the polar axis (in CW or CCW direction).

10

Implementation notes

» Recommendations:

» Build tests and test scenes for collision detection and response
algorithms.

=> Do not build the complete scene of the game (all paddles all wall
bricks).

=> Test function “closest_point_on_line"” is different situations
(configurations of line’s points and the reference point).

=> Test all phases of the collision detection in separate test scenes.

=> Test collison response in separate test scenes (for different velocities
of the ball and the paddle).

	Slide 1: Collision detection and response in the assignment
	Slide 2: Collision detection: Broad phase
	Slide 3: Collision detection: Broad phase
	Slide 4: Collision detection: Narrow phase
	Slide 5: Collision detection: Narrow phase
	Slide 6: Collision response
	Slide 7: Collision response
	Slide 8: Collision response
	Slide 9: Collision response
	Slide 10: Implementation notes
	Slide 11: Implementation notes

