
Data organization in the assignment

Marek Trtík

PA199

2

Typical game architecture

Math

Graphics

Physics

Audio

Network

AI

Animation

Engine libraries

Scripting

…

Game data

Game

mechanics

Game libraries

Quests/story

system

…

Our

Focus

3

 General enough for games:

 Game objects are often composed in an acyclic hierarchies, e.g.,:

Car – the wheels and doors are attached to the body.

Animation skeleton – bones form a tree.

 Items (like weapons) are attached to an agent/player.

 Simple to implement and easy to traverse (tree DFS, BFS):

 class GameNode {

 GameNodeWeakPtr parent;

 std::list<GameNodePtr> children;

 …

Game data: Tree structure

4

class GameNodeHierarchy { // The only owner of all nodes

 GameNodePtr root;

 public:

 static GameNodeHierarchy& instance(); // Singleton

 template<typename NodeType, class... ParameterTypes>

 std::shared_ptr<NodeType> push_back_child(

 GameNodePtr parent,

 ParameterTypes... args);

 …

Game data: Tree structure

5

 A component is a class instance of some Engine/Game library.

 Holds specific data.

 May also provide a functionality – code.

 Allows for a data-driven approach:

 Attaching components to a GameNode => Specification of node’s

purpose in the game.

 Intuitive and easy to use.

 Also easy to implement:

Game data: Component based

6

class Component {

 bool active;

 GameNode* node; // The node this component is attached to.

public:

 virtual ~Component() {} // IMPORTANT: Allows for an inheritance!

 …

 We need to extend GameNode to store attached components:

Component system

7

class GameNode {

 …

 std::list<ComponentPtr> components;

public:

 template<typename ComponentType>

 std::shared_ptr<ComponentType> find_component() const;

 void push_back_component(ComponentPtr component);

 …

 An important component for a game is a frame of reference:

Component system

8

class Frame : public Component { // Frame of reference

 FramePtr parent; // A frame in which this one is defined.

 // We do not need to know about children.

 Vec3 origin;

 Quat orientation;

 Vec3 scale; // Optional; for uniform scaling use just: float scale;

 mutable Mat44* to_world; // Cached; compute on demand.

 mutable Mat44* from_world; // Cached; compute on demand.

 …

Frame of reference

9

 We can define a script component:

 class GameScript : public Component {

 public:

 virtual void update() {} // To be called by ScriptingEngine

 };

 A simple scripting engine can then be defined as follows:

Scripting in C++

10

class ScriptingEngine {

 std::list<GameScriptPtr> scripts;

public:

 static ScriptingEngine& instance(); // Singleton

 void update(); // Call ‘update’ on each script.

 template<typename ScriptType, class... ParameterTypes>

 std::shared_ptr<ScriptType> create_script(ParameterTypes... args) {

 auto script = std::make_shared<ScriptType>(args...);

 scripts.push_back(script); // Keep track of all created scripts.

 return script;

 }

 …

Scripting in C++

11

Example: Data hierarchy of our game

Ball

SphereCollider

SphereController

…

Frame

Paddles

PaddlesController

Frame

Paddle1

…

Frame

Wall

WallController

Frame

Brick1

Frame

…

Ground

Frame

…

… …

Root

12

 A sketch of an implementation of the discussed topic is in IS:

 game_data_hierarchy.ZIP

Reference

	Slide 1: Data organization in the assignment
	Slide 2: Typical game architecture
	Slide 3: Game data: Tree structure
	Slide 4: Game data: Tree structure
	Slide 5: Game data: Component based
	Slide 6: Component system
	Slide 7: Component system
	Slide 8: Frame of reference
	Slide 9: Scripting in C++
	Slide 10: Scripting in C++
	Slide 11: Example: Data hierarchy of our game
	Slide 12: Reference

