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Why Indexes?

* Consider a 100 GB table; at 100 MB/s read speed we need 17 minutes
for a full table scan

* Query for the number of “Bosch S500” washing machines sold in
Germany last month

» Applying restrictions (product, location) the selectivity would be strongly
improved

* If we have 30 locations, 10,000 products and 24 months in the DW,
the selectivity value is 1/30 * 1/ 10,000 * 1/24 = 0,000 000 14

e So... we read 100 GB for 1,4KB of data

* The problem is: how to filter data in a fact table as much as possible



Why Indexes?

* Reduce the size of read pages of data cube to a minimum with indexes
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Index Types

* Tree structures
* B*-tree, R-tree, ...
* Hash based
* Dynamic hash table
* Special
* Bitmap index
e Block-Range INdex (in Pg)



Multidimensional Data ==

Aard| Z

* B*-tree o =l

e classic structure — very efficient in updates Egﬁg%g

* supports point and range queries EEEH

* limited to 1D data B
* UB-tree RL s ] [R5 [wpg

* uses B*-tree and 0

e Z-curve to linearize n-dim data R“@
* R-tree R2|R7

* wrapping by n-dim rectangles

* R*, R*, X-tree | e

root
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UB-Trees

* Convert n-dim data to a single dimension by the Z-curve and

Index part
NN N N
L /] ANEAN

' ¥ [ 4 ¥ 4
Data part ] B

* Index by B* tree
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* The Z-curve provides for good performance
for range queries!
* Consecutive values on the Z-curve index similar data
» Similarity by means of neighborhood
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UB-Trees

row at x=4, y=5

e 7-Value address representation

* Calculate the z-values such that
neighboring data is clustered together

* Calculated through bit interleaving of
the coordinates of the tuple

* To localize a value with coordinates
one must perform de-interleaving

For Z-value 51, we have Z-value = 110010 We have Z-regions —

the offset 50. / \ describes one block

50 in binary is 110010 in storage.
Y=101=5 X=100=4 E.g. [1-9], [10-18].
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Q: xe[2;5], ye[3;6]

UB-Trees — Range Query

* Range queries (RQ) in UB-Trees

* Each query can be specified by 2 coordinates
* g, (the upper left corner of the query rectangle)
* g, (the lower right corner of the query rectangle)

* Range Query Algorithm
1. Calculate z-values for q, and q,
2. Get a node with Z-Region containing q,
* e.g., Z-Region of q, is [10:18]
3. The corresponding page is loaded and filtered with the query predicate

e E.g., value 10 has after de-interleaving x=1 and y=2,
which is outside the query rectangle
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UB-Trees — Range Query

e Range Query Algorithm (cont.)

4. After q,, all values on the Z-curve are
de-interleaved and checked by their
coordinates
* The data is only accessed from the disk.

* The next jump point on the Z-curve is 27.

5. Repeat Steps 2 and 3 until the decoded
end-address of the last filtered region is bigger than q,

Calculating the jump point mostly involves:
* Performing bit operations and comparisons
e 3 points: q,, q, and the current Z-Value
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UB-Trees — next “jump” point

* |dea of getting next jump point

Region Address @——————» 0 Next Intersection Point
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R-Trees

e Like B-trees

* Data objects stored in leaf nodes
* Nodes represented by minimum bounding rectangles

* High-balanced structure

R1 'r5 || |R3 [R11
R10
R4
R6
R8 R9
S root

root

\

X

|R7|R8[R9|

Check all the objects
in node R8

Query S:
7 out of 12 nodes are checked.



R-Trees Querying

 Many MBR overlaps deteriorate query performance
* All nodes get visited in the worst case.

* Key is insertion/split optimization
* Minimize volume by MBR = overlaps.

g g

Bad split

________________________

—————————————————

_________________

Better Split



R+ Tree

* Eliminates overlaps by replication of objects in leaves
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Bitmap Index

e Good for data which has a “small” number of distinct values
* E.g., gender data, clothing sizes

* Similar performance as B+ tree for read-only data
* also, when all values are distinct

* A bitmap index for an attribute is a data structure composed of:

* A collection of bitmaps (bit-vectors)

* The number of bit-vectors represents the count of distinct values of an attr. in the relation
* Bitmap (bit vector/array) is an array data structure that stores individual bits

* Bit signals the presence of value in the row with the relative index of the bit’s position.

* The length of each bit-vector is the cardinality of the relation.

* |tis compressed by Run-length encoding.



Bitmap Index

Shop dim Sales fact Bitmap on Shop of Sales
*Bxample  [IETEE CEETYIET
1 Saturn 1 150 001000
2 Real 2 2 65 2 010101
3 P&C 3 3 160 1 100010
4 2 45
5 1 350
2 80

* Records are allocated permanent numbers.
* There is a mapping between record numbers and record addresses.

e Deletion
* in the fact table = tombstones
* in the index = bit is cleared

Insertion = bit-vectors are extended, and the new record appended to the table
Update = toggle the bits in new old bit-vector array and in the new one.
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Bitmap Index — Queries

* Combine OR/AND values Nr | shop 100010
3

. 1  Saturn 001000 001000
* OR/AND bit ops on vectors . T oo

e E.g., Saturn | P&C 3 PRC 1 100010 101010

e Combine different indexes on the same table

* Bitmap indexes should be used when the selectivity value is low.
* Combinations of multiple indexes increases selectivity.

* Not very good for range queries on values.
e - Range-encoded Bitmap Index
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Multi-component Bitmap Index

* Encoding using a different numeration system to reduce storage
space
* E.g., <divmod> classes

e |dea:

* transform values into more dimensions and project
* intersection of projections gives the original value

* E.g., the month attribute has values between 0 and 11.
* Encode by X = 3*Z+Y

x vz
5 1 0 0 0 0 1 0
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Multi-component Bitmap Index

* If we have 100 (0..99) different days to index we can use a multi-
component bitmap index with basis of <10,10>

* The storage is reduced from 100 to 20 bitmap-vectors
10 fory and 10 for z

* The read-access for a point (1 day out of 100) query needs however
2 read operations instead of just 1



Range-encoded Bitmap Index

* Requires a logical ordering of values

* |dea:
* set the bit in all bit-vectors of the values following this current one

* range queries will check just 2 bit-vectors
* matches are: NOT previous AND current

e Disadvantage:
e a point query requires reading 2 vectors



Range-encoded Bitmap Index

* Query: Persons born between March and August

* So, persons which didn’t exist in February but existed in August.
* Just 2 vectors read: ((NOT A1) AND A7)

Person A, A, A Ag A, A, A A, A; A,

>

0

1 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0

* Normal bitmap would require 6 vectors to read.
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Summary of Indexes

* B-Trees are not fit for multidimensional data
* UB-trees can be applicable

* R-Trees may not scale to many dimensions

* Bitmap indexes are typically only a fraction of the size of the indexed
data in the table

* Bitmap indexes reduce response time for large classes of ad hoc
gueries



Data Partitioning

* Breaking data into “non-overlapping” parts
* Horizontal vs. vertical

* May correspond to granularity of a dimension and use ranges to
define partitions

* [mproves:
e Business query performance,
* i.e., minimize the amount of data to scan

* Data availability,
* e.g., back-up/restore can run at the partition level

* Database administration,
e e.g., archiving data, recreating indexes, loading tables



Data Partitioning

* Approaches:
* Logical partitioning by
* Date, Line of business, Geography, Organizational unit, Combinations of these factors, ...
* Physical partitioning
* Makes data available to different processing nodes
* Possible parallelization on multiple disks/machines

* Implementation:
* Application level
* Database system



Data Partitioning

* Horizontal — splitting out the rows of a table into multiple tables
* Vertical — splitting out the columns of a table into multiple tables

Horizontal Master table Vertical

% %
—_
s "
—

I . Partitioning key
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Horizontal Partitioning

* Distributes records into disjoint tables
* Typically, “view” over union of the table is available
* Types:

* range — a range of values per table
* |list — enumeration of values per table
* hash —result of a hash function determines the table

* In DWs typically:

* Generated reports can identify the partitioning key.
* Time dimension — weeks, months or age of data
* Another dim if it does not change often — branch, region

* Table size — requires some meta-data to constraint the contents



Vertical Partitioning

* Involves creating tables with fewer columns and using additional
tables to store the remaining columns

e Usually called row splitting
* Row splitting creates one-to-one relationships between the partitions

* Different physical storage might be used
e E.g., storing infrequently used or very wide columns on a different device

* In DWs typically:

* move seldom used columns from a highly-used table to another
e create a view that merges them



Vertical Partitioning

* Mini-dimension with outrigger is a solution
* Many dimension attributes are used very frequently as browsing constraints
* In big dimensions these constraints can be hard to find among the lesser used ones

* Logical groups of often used constraints can be separated into small dimensions
e which are very well indexed and easily accessible for browsing

. . Cust
e E.g., demography dimension “wble
* Notice the foreign key in
Last Name
Customer First Name
Address
Fact table DemogrID
ProdID
TimelD Demography

CustomerID
DemogriD

Profit
Qty

PA220 DB for Analytics
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Summary of Partitioning

* Advantages

* Records used together are grouped together
Each partition can be optimized for performance
Security, recovery
Partitions stored on different disks reduces contention
Take advantage of parallel processing capability

* Disadvantages
» Slow retrieval across partitions (expensive joins when vertical partitioning)
* Complexity

e Recommendations

* Atableis larger than 2GB (from Oracle)
* A table has more than 100 million rows (practice)



Join Optimization

e Queries over several partitions are often needed
* This results in joins over the data

* Though joins are generally expensive operations, the overall cost of the query
may strongly differ with the chosen evaluation plan for the joins

e Joins are commutative and associative
e RKS=SXR
*RM(SHT)=(SXR)™T



Join Optimization

* This allows evaluating individual joins in any order
e Results in join trees
 Different join trees may show very different evaluation performance
* Join trees have different shapes
* Within a shape, there are different relation assignments possible
 Number of possible join trees grows rapidly (n!)

* DBMS’ optimizer considers
* statistics to minimize result size
* all possibilities = impossible for large n

* heuristics to pick promising ones
 when the number of relations is high (e.g., >6)
* e.g., genetic algorithms




1
Product ID
Product group m
Product category n Product ID 1
L [ ] ° ° S rrogauct 1D i D
Description Time 1D :_,7 ﬁ
Ooln >eleCtion Aeuristics o " Y
Sales Month
Revenue Quarter

Year

* Join relations that relate by an attribute/condition |

* avoiding cross joins / 6 grorp= s | |
* Minimize the result size (A is the common attr.) | S—— e
o T(R)*T(S) i:.ountry
maX(V(R,A),V(S,A)) 'G month = ‘Jan 2016
* Availability of indexes and selectivity of - Time
other conditions
o country = ‘Germany’
|
° : Sales Geo
User tuning

* Hints in Oracle
* Set the parameter join_collapse_limit in PostgreSQL
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Join Selection Heuristics in DWs

 OLTP’s heuristics are not suitable in DWs

/\G country = ,Germany"
\

Sales

Geo

* E.g., join Sales with Geo in the following case:

* Sales has 10 mil records, in Germany there are 10 stores,
in January 2016 there were products sold in 20 days, and
the Electronics group has 50 products

* |f 20 % of our sales were performed in Germany,
* the selectivity value is high.
* 5o, an index would not help that much

* The intermediate result would still comprise 2 mil records

* Cross join is recommended




Join Selection Heuristics in DWs

* The cross join of the dimension tables is recommended

* Geo dimension — 10 stores in Germany

* Time dimension — 20 days in Jan 2016

* Product dimension — 50 products in Electronics
* 10m facts in Sales

* But can also be expensive!

e Allows

* a single pass over the Sales
* using an index on the most selective attribute yet

X

/\

X Sales

-\\‘
/ v
group=,Electronics"”

X

/\ Product

)

country=,Germany"

0 month=,Jan 2016"

|

Geo

10*20*50 = 10,000 records after performing the cross product

|
Time




Join Selection Heuristics in DWs

* If cross join is too large, intersect partial joins
* applicable when all dimension FKs are indexed
* in fact, it is a semi-join (no record duplication can take place)

Index on Sales
for our query

Index dn Sales
for elegtronics

Index on Geo Index on Prod Index on

Sales(GeolD) sales(ProdID) Sales(TimelD)
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Summary of Joins

* Prefer a cross-join on dimensions first
* If not all dimension FKs are indexed

* Intersect semi-joins otherwise

* Avoid standard DBMS’s plans
* But check the plan first ©



Materialized Views

* Views whose tuples are stored in the database are said to be
materialized

* They provide fast access, like a (very high-level) cache

* Need to maintain the view’s contents as the underlying tables change
* |deally, we want incremental view maintenance algorithms



Materialized Views

* How can we use MV in DW?

* E.g., we have queries requiring us to join the Sales table with another table
and aggregate the result

e SELECT P.Categ, SUM(S.Qty) FROM Product P, Sales S WHERE P.ProdID=S.ProdID
GROUP BY P.Categ

e SELECT G.Store, SUM(S.Qty) FROM Geo G, Sales S WHERE G.GeolD=S.GeolD
GROUP BY G.Store

* There are more solutions to speed up such queries

* Pre-compute the two joins involved (product with sales and geo with sales)
* Pre-compute each query in its entirety
* Or use a common and already materialized view



Materialized Views

* Having the following view materialized

* CREATE MATERIALIZED VIEW Totalsales(ProdID, GeolD, total) AS
SELECT S.ProdID, S.GeolD, SUM(S.Qty) FROM Sales S
GROUP BY S.ProdID, S.GeolD

* We can use it in our queries

e SELECT P.Categ, SUM(T.Total) FROM Product P, Totalsales T
WHERE P.ProdID=T.ProdID GROUP BY P.Categ

e SELECT G.Store, SUM(T.Total) FROM Geo G, Totalsales T
WHERE G.GeolD=T.GeolD GROUP BY G.Store



Materialized Views

* MV issues

* Choice of materialized views

* What views should we materialize, and what indexes should we build on the pre-
computed results?

e Utilization

* Given a query and a set of materialized views, can we use the materialized views to
answer the query?

e Maintenance

 How frequently should we refresh materialized views to make them consistent with the
underlying tables?

* And how can we do this incrementally?



Materialized Views: Utilization

 Utilization must be transparent

* Queries are internally rewritten to use the available MVs by the query
rewriter

* The query rewriter performs integration of the MV based on the query
execution graph



Materialized Views: Utilization

* E.g., mono-block query (perfect match)

Quelry Q MV M Query Q
|
|

X B
- —
h % Sales Op OF Og
/\ [
O Op Geo Product MV M Geo
l |
Sales Product
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Materialized Views: Integration

 Correctness:

* A query Q represents a valid replacement of query Q by utilizing the
materialized view M, if Q and Q' always deliver the same result.

* Implementation requires the following conditions:
* The selection condition in M cannot be more restrictive than the one in Q.
* The projection from Q must be a subset of the projection from M.
* It must be possible to derive the aggregation functions in Q from ones in M.
* Additional selection conditions in Q must be possible also on M.



Materialized Views: Integration

* A way to integrate a more restrictive view:
* Split the query Q in two parts, Q, and Q,, such that
* 0(Q,) = (o(Q) A 6(M)) and
* o(Qp) = (a(Q) A -o(M))

Query Q

0-Sales T[Prite, Group, Store

b
_— T
X o
N
OF[Q] GIP —_—
Sales Product

October 24, 2023

MV M
I

o Sales, Invoice T[Price, Group

D]

/\

Of

[M] Op

Sa

les Product

Orq]

- all sales

OF[M]

- More restrictive:

all sales above a threshold

GSales T[Store

Query Q

|

UALL

/\

X

o Y

OF[q) A OF[M]

MV M

Og

X

O sales T[Price, Group, Store

X

/\

Geo

Oriq1 A 7O0F[M]

Op
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Materialized Views & DWs

» Often store aggregated results

* For a set of “n” group-by attributes, there are 2" possible combinations
* Too many to materialize all
* What to materialize? @R O.Difepesain

(city)

(
= ) 1-D cuboids

2-D cuboids
>

(item, year)

3-D (base) cuboid

(ciry, item, year)
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Materialized Views & DWs

* Choosing the views to materialize

e Static choice:

* The choice is performed at a certain time point

* by the DB administrator (not very often) or by an algorithm
* The set of MVs remains unmodified until the next refresh
* The chosen MVs correspond to older queries

* Dynamical choice:
 The MV set adapts itself according to new queries



Views to Materialize

e Static choice

* Choose which views to materialize, in concordance with the “benefit” they bring
* The benefit is computed based on a cost function

* The cost function involves
* Query costs
 Statistical approximations of the frequency of the query
* Actualization/maintenance costs
 Classical knapsack problem —a limit on MV storage and the cost of each MV

* Greedy algorithm

* Input: the lattice of cuboids, the expected cardinality of each node, and the maximum storage
size available to save MVs

* |t calculates the nodes from the lattice which bring the highest benefit according to the cost
function, until there is no more space to store MVs

e Qutput: the list of lattice nodes to be materialized



Views to Materialize

* Disadvantages of static choice

* OLAP applications are interactive

* Usually, the user runs a series of queries to explain a behavior he has observed, which
happened for the first time

* So now the query set comprises hard to predict, ad-hoc queries

* Even if the query pattern is observed after a while, it is unknown for how
much time the pattern will remain valid

* Queries are always changing
* Often modification to the data leads to high update effort

* There are, however, also for OLAP applications, some often repeating
gueries that should in any case be statically materialized



Views to Materialize

* Dynamic choice
* Monitor the queries being executed over time

* Maintain a materialized view processing plan (MVPP) by incorporating most
frequently executed queries

Modify MVPP incrementally by executing MVPP generation algorithm
* as a background process

Decide on the views to be materialized
Reorganize the existing views

It works on the same principle as caching, but with semantic
knowledge



Views to Materialize

* Dynamic choice
e Updates of cached MV:

* In each step, the cost of MV in the cache as well as of the query is calculated

e All MVs as well as the query result are sorted according to their costs

* The cache is then filled with MV in the order of their costs, from high to low

* This way it can happen that one or more old MVs are replaced with the current query
* Factors consider in the cost function:

* Time of the last access

* Frequency of query

* Size of the materialized view

* The costs a new calculation or actualization would produce for a MV

* Number of queries which were answered with the MV

* Number of queries which could be answered with this MV



Maintenance of Materialized Views

* Keeping a materialized view up-to-date with the underlying data
* How do we refresh a view when an underlying table is refreshed?
 When should we refresh a view in response to a change in the underlying table?

* Approaches:
* Re-computation — re-calculated from the scratch
* Incremental — updated by new data, not easy to implement

* Immediate — as part of the transaction that modifies the underlying data tables
e Advantage: materialized view is always consistent
* Disadvantage: updates are slowed down
* Deferred — some time later, in a separate transaction
e Advantage: can scale to maintain many views without slowing updates
* Disadvantage: view briefly becomes inconsistent



Maintenance of Materialized Views

* Incremental maintenance

* Changes to database relations are used to compute changes to the
materialized view, which is then updated

* Considering that we have a materialized view V, and that the basis relations
suffer modifications through inserts, updates or deletes, we can calculate V'

as follows
« V' =(V-A)UA*, where A and A* represent deleted and inserted tuples, respectively



Maintenance of Materialized Views

* Deferred update options:
* Lazy
* delay refresh until next query on view, then refresh before answering the query
* Periodic (Snapshot)

* refresh periodically — queries are possibly answered using outdated version of view
tuples

e widely used in DWs
* Event-based
* e.g., refresh after a fixed number of updates to underlying data tables



summary

* The term selectivity and its interpretation.

* Bitmap indexes are universal, space efficient
 R*-trees, X-trees for multidimensional data
* Partitioning

* Records used together should be stored together
* Mini-dimension
* Joins
 Computing cross join on dimension table is an option

* Materialized views can replace parts of a query
* Select what to materialize (not everything) statically or dynamically
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