MUNI
FACULTY
OF INFORMATICS

PA220: Database systems for data analytics

Data Warehouse
Indexing & Optimization

Contents

e Approaches to indexing
* Data partitioning

* Joins

* Materialized views

Why Indexes?

* Consider a 100 GB table; at 100 MB/s read speed we need 17 minutes
for a full table scan

* Query for the number of “Bosch S500” washing machines sold in
Germany last month

» Applying restrictions (product, location) the selectivity would be strongly
improved

* If we have 30 locations, 10,000 products and 24 months in the DW,
the selectivity value is 1/30 * 1/ 10,000 * 1/24 = 0,000 000 14

e So... we read 100 GB for 1,4KB of data

* The problem is: how to filter data in a fact table as much as possible

Why Indexes?

* Reduce the size of read pages of data cube to a minimum with indexes

)) o)
O O O O
e ju o put
E . E 2 E .
+—~ +~ = 4
o o | |
-] >3 -] -
o o o o
o 2 o 2
o o (a1 (a8
Time (Days) Time (Days) Time (Days) Time (Days)
Full table scan Cluster primary More secondary Optimal multi-
index Indexes, bitmap indexes dimensional index

Scanned data - Selected data

October 24, 2023 PA220 DB for Analytics 4

Index Types

* Tree structures
* B*-tree, R-tree, ...
* Hash based
* Dynamic hash table
* Special
* Bitmap index
e Block-Range INdex (in Pg)

Multidimensional Data ==

Aard| Z

* B*-tree o =l

e classic structure — very efficient in updates Egﬁg%g

* supports point and range queries EEEH

* limited to 1D data B
* UB-tree RL s] [R5 [wpg

* uses B*-tree and 0

e Z-curve to linearize n-dim data R“@
* R-tree R2|R7

* wrapping by n-dim rectangles

* R*, R*, X-tree | e

root

October 24, 2023 PA220 DB for Analytics

UB-Trees

* Convert n-dim data to a single dimension by the Z-curve and

Index part
NN N N
L /] ANEAN

' ¥ [4 ¥ 4
Data part] B

* Index by B* tree

Y

* The Z-curve provides for good performance
for range queries!
* Consecutive values on the Z-curve index similar data
» Similarity by means of neighborhood

~
K
/
E
Vo
&

E=
=
E2
B
[

October 24, 2023 PA220 DB for Analytics 7

UB-Trees

row at x=4, y=5

e 7-Value address representation

* Calculate the z-values such that
neighboring data is clustered together

* Calculated through bit interleaving of
the coordinates of the tuple

* To localize a value with coordinates
one must perform de-interleaving

For Z-value 51, we have Z-value = 110010 We have Z-regions —

the offset 50. / \ describes one block

50 in binary is 110010 in storage.
Y=101=5 X=100=4 E.g. [1-9], [10-18].

October 24, 2023 PA220 DB for Analytics 8

Q: xe[2;5], ye[3;6]

UB-Trees — Range Query

* Range queries (RQ) in UB-Trees

* Each query can be specified by 2 coordinates
* g, (the upper left corner of the query rectangle)
* g, (the lower right corner of the query rectangle)

* Range Query Algorithm
1. Calculate z-values for q, and q,
2. Get a node with Z-Region containing q,
* e.g., Z-Region of q, is [10:18]
3. The corresponding page is loaded and filtered with the query predicate

e E.g., value 10 has after de-interleaving x=1 and y=2,
which is outside the query rectangle

October 24, 2023 PA220 DB for Analytics 9

UB-Trees — Range Query

e Range Query Algorithm (cont.)

4. After q,, all values on the Z-curve are
de-interleaved and checked by their
coordinates
* The data is only accessed from the disk.

* The next jump point on the Z-curve is 27.

5. Repeat Steps 2 and 3 until the decoded
end-address of the last filtered region is bigger than q,

Calculating the jump point mostly involves:
* Performing bit operations and comparisons
e 3 points: q,, q, and the current Z-Value

October 24, 2023 PA220 DB for Analytics 10

UB-Trees — next “jump” point

* |dea of getting next jump point

Region Address @——————» 0 Next Intersection Point

October 24, 2023 PA220 DB for Analytics 11

R-Trees

e Like B-trees

* Data objects stored in leaf nodes
* Nodes represented by minimum bounding rectangles

* High-balanced structure

R1 'r5 || |R3 [R11
R10
R4
R6
R8 R9
S root

root

\

X

|R7|R8[R9|

Check all the objects
in node R8

Query S:
7 out of 12 nodes are checked.

R-Trees Querying

 Many MBR overlaps deteriorate query performance
* All nodes get visited in the worst case.

* Key is insertion/split optimization
* Minimize volume by MBR = overlaps.

g g

Bad split

—————————————————

Better Split

R+ Tree

* Eliminates overlaps by replication of objects in leaves

“ (N
Tl LAN

* Improves performance of point queries

>
M
W |9

Bitmap Index

e Good for data which has a “small” number of distinct values
* E.g., gender data, clothing sizes

* Similar performance as B+ tree for read-only data
* also, when all values are distinct

* A bitmap index for an attribute is a data structure composed of:

* A collection of bitmaps (bit-vectors)

* The number of bit-vectors represents the count of distinct values of an attr. in the relation
* Bitmap (bit vector/array) is an array data structure that stores individual bits

* Bit signals the presence of value in the row with the relative index of the bit’s position.

* The length of each bit-vector is the cardinality of the relation.

* |tis compressed by Run-length encoding.

Bitmap Index

Shop dim Sales fact Bitmap on Shop of Sales
*Bxample [IETEE CEETYIET
1 Saturn 1 150 001000
2 Real 2 2 65 2 010101
3 P&C 3 3 160 1 100010
4 2 45
5 1 350
2 80

* Records are allocated permanent numbers.
* There is a mapping between record numbers and record addresses.

e Deletion
* in the fact table = tombstones
* in the index = bit is cleared

Insertion = bit-vectors are extended, and the new record appended to the table
Update = toggle the bits in new old bit-vector array and in the new one.

October 24, 2023 PA220 DB for Analytics 16

Bitmap Index — Queries

* Combine OR/AND values Nr | shop 100010
3

. 1 Saturn 001000 001000
* OR/AND bit ops on vectors . T oo

e E.g., Saturn | P&C 3 PRC 1 100010 101010

e Combine different indexes on the same table

* Bitmap indexes should be used when the selectivity value is low.
* Combinations of multiple indexes increases selectivity.

* Not very good for range queries on values.
e - Range-encoded Bitmap Index

October 24, 2023 PA220 DB for Analytics 17

Multi-component Bitmap Index

* Encoding using a different numeration system to reduce storage
space
* E.g., <divmod> classes

e |dea:

* transform values into more dimensions and project
* intersection of projections gives the original value

* E.g., the month attribute has values between 0 and 11.
* Encode by X = 3*Z+Y

x vz
5 1 0 0 0 0 1 0

October 24, 2023 PA220 DB for Analytics 18

Multi-component Bitmap Index

* If we have 100 (0..99) different days to index we can use a multi-
component bitmap index with basis of <10,10>

* The storage is reduced from 100 to 20 bitmap-vectors
10 fory and 10 for z

* The read-access for a point (1 day out of 100) query needs however
2 read operations instead of just 1

Range-encoded Bitmap Index

* Requires a logical ordering of values

* |dea:
* set the bit in all bit-vectors of the values following this current one

* range queries will check just 2 bit-vectors
* matches are: NOT previous AND current

e Disadvantage:
e a point query requires reading 2 vectors

Range-encoded Bitmap Index

* Query: Persons born between March and August

* So, persons which didn’t exist in February but existed in August.
* Just 2 vectors read: ((NOT A1) AND A7)

Person A, A, A Ag A, A, A A, A; A,

>

0

1 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0

* Normal bitmap would require 6 vectors to read.

October 24, 2023 PA220 DB for Analytics 21

Summary of Indexes

* B-Trees are not fit for multidimensional data
* UB-trees can be applicable

* R-Trees may not scale to many dimensions

* Bitmap indexes are typically only a fraction of the size of the indexed
data in the table

* Bitmap indexes reduce response time for large classes of ad hoc
gueries

Data Partitioning

* Breaking data into “non-overlapping” parts
* Horizontal vs. vertical

* May correspond to granularity of a dimension and use ranges to
define partitions

* [mproves:
e Business query performance,
* i.e., minimize the amount of data to scan

* Data availability,
* e.g., back-up/restore can run at the partition level

* Database administration,
e e.g., archiving data, recreating indexes, loading tables

Data Partitioning

* Approaches:
* Logical partitioning by
* Date, Line of business, Geography, Organizational unit, Combinations of these factors, ...
* Physical partitioning
* Makes data available to different processing nodes
* Possible parallelization on multiple disks/machines

* Implementation:
* Application level
* Database system

Data Partitioning

* Horizontal — splitting out the rows of a table into multiple tables
* Vertical — splitting out the columns of a table into multiple tables

Horizontal Master table Vertical

% %
—_
s "
—

I . Partitioning key

October 24, 2023 PA220 DB for Analytics 25

Horizontal Partitioning

* Distributes records into disjoint tables
* Typically, “view” over union of the table is available
* Types:

* range — a range of values per table
* |list — enumeration of values per table
* hash —result of a hash function determines the table

* In DWs typically:

* Generated reports can identify the partitioning key.
* Time dimension — weeks, months or age of data
* Another dim if it does not change often — branch, region

* Table size — requires some meta-data to constraint the contents

Vertical Partitioning

* Involves creating tables with fewer columns and using additional
tables to store the remaining columns

e Usually called row splitting
* Row splitting creates one-to-one relationships between the partitions

* Different physical storage might be used
e E.g., storing infrequently used or very wide columns on a different device

* In DWs typically:

* move seldom used columns from a highly-used table to another
e create a view that merges them

Vertical Partitioning

* Mini-dimension with outrigger is a solution
* Many dimension attributes are used very frequently as browsing constraints
* In big dimensions these constraints can be hard to find among the lesser used ones

* Logical groups of often used constraints can be separated into small dimensions
e which are very well indexed and easily accessible for browsing

. . Cust
e E.g., demography dimension “wble
* Notice the foreign key in
Last Name
Customer First Name
Address
Fact table DemogrID
ProdID
TimelD Demography

CustomerID
DemogriD

Profit
Qty

PA220 DB for Analytics

October 24, 2023

Age group
Income group
Area

28

Summary of Partitioning

* Advantages

* Records used together are grouped together
Each partition can be optimized for performance
Security, recovery
Partitions stored on different disks reduces contention
Take advantage of parallel processing capability

* Disadvantages
» Slow retrieval across partitions (expensive joins when vertical partitioning)
* Complexity

e Recommendations

* Atableis larger than 2GB (from Oracle)
* A table has more than 100 million rows (practice)

Join Optimization

e Queries over several partitions are often needed
* This results in joins over the data

* Though joins are generally expensive operations, the overall cost of the query
may strongly differ with the chosen evaluation plan for the joins

e Joins are commutative and associative
e RKS=SXR
*RM(SHT)=(SXR)™T

Join Optimization

* This allows evaluating individual joins in any order
e Results in join trees
 Different join trees may show very different evaluation performance
* Join trees have different shapes
* Within a shape, there are different relation assignments possible
 Number of possible join trees grows rapidly (n!)

* DBMS’ optimizer considers
* statistics to minimize result size
* all possibilities = impossible for large n

* heuristics to pick promising ones
 when the number of relations is high (e.g., >6)
* e.g., genetic algorithms

1
Product ID
Product group m
Product category n Product ID 1
L [] ° ° S rrogauct 1D i D
Description Time 1D :_,7 ﬁ
Ooln >eleCtion Aeuristics o " Y
Sales Month
Revenue Quarter

Year

* Join relations that relate by an attribute/condition |

* avoiding cross joins / 6 grorp= s | |
* Minimize the result size (A is the common attr.) | S—— e
o T(R)*T(S) i:.ountry
maX(V(R,A),V(S,A)) 'G month = ‘Jan 2016
* Availability of indexes and selectivity of - Time
other conditions
o country = ‘Germany’
|
° : Sales Geo
User tuning

* Hints in Oracle
* Set the parameter join_collapse_limit in PostgreSQL

October 24, 2023 PA220 DB for Analytics 32

Join Selection Heuristics in DWs

 OLTP’s heuristics are not suitable in DWs

/\G country = ,Germany"
\

Sales

Geo

* E.g., join Sales with Geo in the following case:

* Sales has 10 mil records, in Germany there are 10 stores,
in January 2016 there were products sold in 20 days, and
the Electronics group has 50 products

* |f 20 % of our sales were performed in Germany,
* the selectivity value is high.
* 5o, an index would not help that much

* The intermediate result would still comprise 2 mil records

* Cross join is recommended

Join Selection Heuristics in DWs

* The cross join of the dimension tables is recommended

* Geo dimension — 10 stores in Germany

* Time dimension — 20 days in Jan 2016

* Product dimension — 50 products in Electronics
* 10m facts in Sales

* But can also be expensive!

e Allows

* a single pass over the Sales
* using an index on the most selective attribute yet

X

/\

X Sales

-\\‘
/ v
group=,Electronics"”

X

/\ Product

)

country=,Germany"

0 month=,Jan 2016"

|

Geo

10*20*50 = 10,000 records after performing the cross product

|
Time

Join Selection Heuristics in DWs

* If cross join is too large, intersect partial joins
* applicable when all dimension FKs are indexed
* in fact, it is a semi-join (no record duplication can take place)

Index on Sales
for our query

Index dn Sales
for elegtronics

Index on Geo Index on Prod Index on

Sales(GeolD) sales(ProdID) Sales(TimelD)

October 24, 2023 PA220 DB for Analytics 35

Summary of Joins

* Prefer a cross-join on dimensions first
* If not all dimension FKs are indexed

* Intersect semi-joins otherwise

* Avoid standard DBMS’s plans
* But check the plan first ©

Materialized Views

* Views whose tuples are stored in the database are said to be
materialized

* They provide fast access, like a (very high-level) cache

* Need to maintain the view’s contents as the underlying tables change
* |deally, we want incremental view maintenance algorithms

Materialized Views

* How can we use MV in DW?

* E.g., we have queries requiring us to join the Sales table with another table
and aggregate the result

e SELECT P.Categ, SUM(S.Qty) FROM Product P, Sales S WHERE P.ProdID=S.ProdID
GROUP BY P.Categ

e SELECT G.Store, SUM(S.Qty) FROM Geo G, Sales S WHERE G.GeolD=S.GeolD
GROUP BY G.Store

* There are more solutions to speed up such queries

* Pre-compute the two joins involved (product with sales and geo with sales)
* Pre-compute each query in its entirety
* Or use a common and already materialized view

Materialized Views

* Having the following view materialized

* CREATE MATERIALIZED VIEW Totalsales(ProdID, GeolD, total) AS
SELECT S.ProdID, S.GeolD, SUM(S.Qty) FROM Sales S
GROUP BY S.ProdID, S.GeolD

* We can use it in our queries

e SELECT P.Categ, SUM(T.Total) FROM Product P, Totalsales T
WHERE P.ProdID=T.ProdID GROUP BY P.Categ

e SELECT G.Store, SUM(T.Total) FROM Geo G, Totalsales T
WHERE G.GeolD=T.GeolD GROUP BY G.Store

Materialized Views

* MV issues

* Choice of materialized views

* What views should we materialize, and what indexes should we build on the pre-
computed results?

e Utilization

* Given a query and a set of materialized views, can we use the materialized views to
answer the query?

e Maintenance

 How frequently should we refresh materialized views to make them consistent with the
underlying tables?

* And how can we do this incrementally?

Materialized Views: Utilization

 Utilization must be transparent

* Queries are internally rewritten to use the available MVs by the query
rewriter

* The query rewriter performs integration of the MV based on the query
execution graph

Materialized Views: Utilization

* E.g., mono-block query (perfect match)

Quelry Q MV M Query Q
|
|

X B
- —
h % Sales Op OF Og
/\ [
O Op Geo Product MV M Geo
l |
Sales Product

October 24, 2023 PA220 DB for Analytics 42

Materialized Views: Integration

 Correctness:

* A query Q represents a valid replacement of query Q by utilizing the
materialized view M, if Q and Q' always deliver the same result.

* Implementation requires the following conditions:
* The selection condition in M cannot be more restrictive than the one in Q.
* The projection from Q must be a subset of the projection from M.
* It must be possible to derive the aggregation functions in Q from ones in M.
* Additional selection conditions in Q must be possible also on M.

Materialized Views: Integration

* A way to integrate a more restrictive view:
* Split the query Q in two parts, Q, and Q,, such that
* 0(Q,) = (o(Q) A 6(M)) and
* o(Qp) = (a(Q) A -o(M))

Query Q

0-Sales T[Prite, Group, Store

b
_— T
X o
N
OF[Q] GIP —_—
Sales Product

October 24, 2023

MV M
I

o Sales, Invoice T[Price, Group

D]

/\

Of

[M] Op

Sa

les Product

Orq]

- all sales

OF[M]

- More restrictive:

all sales above a threshold

GSales T[Store

Query Q

|

UALL

/\

X

o Y

OF[q) A OF[M]

MV M

Og

X

O sales T[Price, Group, Store

X

/\

Geo

Oriq1 A 7O0F[M]

Op

PA220 DB for Analytics

|

Sales

Product

44

Materialized Views & DWs

» Often store aggregated results

* For a set of “n” group-by attributes, there are 2" possible combinations
* Too many to materialize all
* What to materialize? @R O.Difepesain

(city)

(
=) 1-D cuboids

2-D cuboids
>

(item, year)

3-D (base) cuboid

(ciry, item, year)

October 24, 2023 PA220 DB for Analytics 45

Materialized Views & DWs

* Choosing the views to materialize

e Static choice:

* The choice is performed at a certain time point

* by the DB administrator (not very often) or by an algorithm
* The set of MVs remains unmodified until the next refresh
* The chosen MVs correspond to older queries

* Dynamical choice:
 The MV set adapts itself according to new queries

Views to Materialize

e Static choice

* Choose which views to materialize, in concordance with the “benefit” they bring
* The benefit is computed based on a cost function

* The cost function involves
* Query costs
 Statistical approximations of the frequency of the query
* Actualization/maintenance costs
 Classical knapsack problem —a limit on MV storage and the cost of each MV

* Greedy algorithm

* Input: the lattice of cuboids, the expected cardinality of each node, and the maximum storage
size available to save MVs

* |t calculates the nodes from the lattice which bring the highest benefit according to the cost
function, until there is no more space to store MVs

e Qutput: the list of lattice nodes to be materialized

Views to Materialize

* Disadvantages of static choice

* OLAP applications are interactive

* Usually, the user runs a series of queries to explain a behavior he has observed, which
happened for the first time

* So now the query set comprises hard to predict, ad-hoc queries

* Even if the query pattern is observed after a while, it is unknown for how
much time the pattern will remain valid

* Queries are always changing
* Often modification to the data leads to high update effort

* There are, however, also for OLAP applications, some often repeating
gueries that should in any case be statically materialized

Views to Materialize

* Dynamic choice
* Monitor the queries being executed over time

* Maintain a materialized view processing plan (MVPP) by incorporating most
frequently executed queries

Modify MVPP incrementally by executing MVPP generation algorithm
* as a background process

Decide on the views to be materialized
Reorganize the existing views

It works on the same principle as caching, but with semantic
knowledge

Views to Materialize

* Dynamic choice
e Updates of cached MV:

* In each step, the cost of MV in the cache as well as of the query is calculated

e All MVs as well as the query result are sorted according to their costs

* The cache is then filled with MV in the order of their costs, from high to low

* This way it can happen that one or more old MVs are replaced with the current query
* Factors consider in the cost function:

* Time of the last access

* Frequency of query

* Size of the materialized view

* The costs a new calculation or actualization would produce for a MV

* Number of queries which were answered with the MV

* Number of queries which could be answered with this MV

Maintenance of Materialized Views

* Keeping a materialized view up-to-date with the underlying data
* How do we refresh a view when an underlying table is refreshed?
 When should we refresh a view in response to a change in the underlying table?

* Approaches:
* Re-computation — re-calculated from the scratch
* Incremental — updated by new data, not easy to implement

* Immediate — as part of the transaction that modifies the underlying data tables
e Advantage: materialized view is always consistent
* Disadvantage: updates are slowed down
* Deferred — some time later, in a separate transaction
e Advantage: can scale to maintain many views without slowing updates
* Disadvantage: view briefly becomes inconsistent

Maintenance of Materialized Views

* Incremental maintenance

* Changes to database relations are used to compute changes to the
materialized view, which is then updated

* Considering that we have a materialized view V, and that the basis relations
suffer modifications through inserts, updates or deletes, we can calculate V'

as follows
« V' =(V-A)UA*, where A and A* represent deleted and inserted tuples, respectively

Maintenance of Materialized Views

* Deferred update options:
* Lazy
* delay refresh until next query on view, then refresh before answering the query
* Periodic (Snapshot)

* refresh periodically — queries are possibly answered using outdated version of view
tuples

e widely used in DWs
* Event-based
* e.g., refresh after a fixed number of updates to underlying data tables

summary

* The term selectivity and its interpretation.

* Bitmap indexes are universal, space efficient
 R*-trees, X-trees for multidimensional data
* Partitioning

* Records used together should be stored together
* Mini-dimension
* Joins
 Computing cross join on dimension table is an option

* Materialized views can replace parts of a query
* Select what to materialize (not everything) statically or dynamically

	Snímek 1: Data Warehouse Indexing & Optimization
	Snímek 2: Contents
	Snímek 3: Why Indexes?
	Snímek 4: Why Indexes?
	Snímek 5: Index Types
	Snímek 6: Multidimensional Data
	Snímek 7: UB-Trees
	Snímek 8: UB-Trees
	Snímek 9: UB-Trees – Range Query
	Snímek 10: UB-Trees – Range Query
	Snímek 11: UB-Trees – next “jump” point
	Snímek 12: R-Trees
	Snímek 13: R-Trees Querying
	Snímek 14: R+ Tree
	Snímek 15: Bitmap Index
	Snímek 16: Bitmap Index
	Snímek 17: Bitmap Index – Queries
	Snímek 18: Multi-component Bitmap Index
	Snímek 19: Multi-component Bitmap Index
	Snímek 20: Range-encoded Bitmap Index
	Snímek 21: Range-encoded Bitmap Index
	Snímek 22: Summary of Indexes
	Snímek 23: Data Partitioning
	Snímek 24: Data Partitioning
	Snímek 25: Data Partitioning
	Snímek 26: Horizontal Partitioning
	Snímek 27: Vertical Partitioning
	Snímek 28: Vertical Partitioning
	Snímek 29: Summary of Partitioning
	Snímek 30: Join Optimization
	Snímek 31: Join Optimization
	Snímek 32: Join Selection Heuristics
	Snímek 33: Join Selection Heuristics in DWs
	Snímek 34: Join Selection Heuristics in DWs
	Snímek 35: Join Selection Heuristics in DWs
	Snímek 36: Summary of Joins
	Snímek 37: Materialized Views
	Snímek 38: Materialized Views
	Snímek 39: Materialized Views
	Snímek 40: Materialized Views
	Snímek 41: Materialized Views: Utilization
	Snímek 42: Materialized Views: Utilization
	Snímek 43: Materialized Views: Integration
	Snímek 44: Materialized Views: Integration
	Snímek 45: Materialized Views & DWs
	Snímek 46: Materialized Views & DWs
	Snímek 47: Views to Materialize
	Snímek 48: Views to Materialize
	Snímek 49: Views to Materialize
	Snímek 50: Views to Materialize
	Snímek 51: Maintenance of Materialized Views
	Snímek 52: Maintenance of Materialized Views
	Snímek 53: Maintenance of Materialized Views
	Snímek 54: Summary

