MUNI FACULTY OF INFORMATICS

PA220: Database systems for data analytics

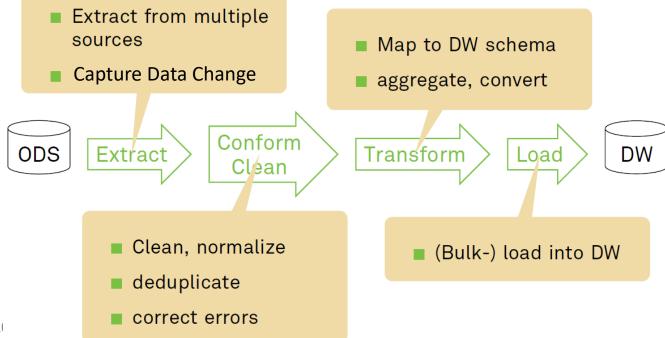
ETL Process

Contents

- Overview of ETL
- Data Cleaning
- Loading Tips
- Issues
- Summary

ETL Process Overview

- Data is periodically brought from the ODS to the data warehouse.
- In most DW systems, the ETL process is the most complex part.
 - and the most underestimated and time-consuming part.
 - Often, 80% of development time is spent on ETL



Data Staging Area

Transit storage for data underway in the ETL process

Transformations/cleansing done here

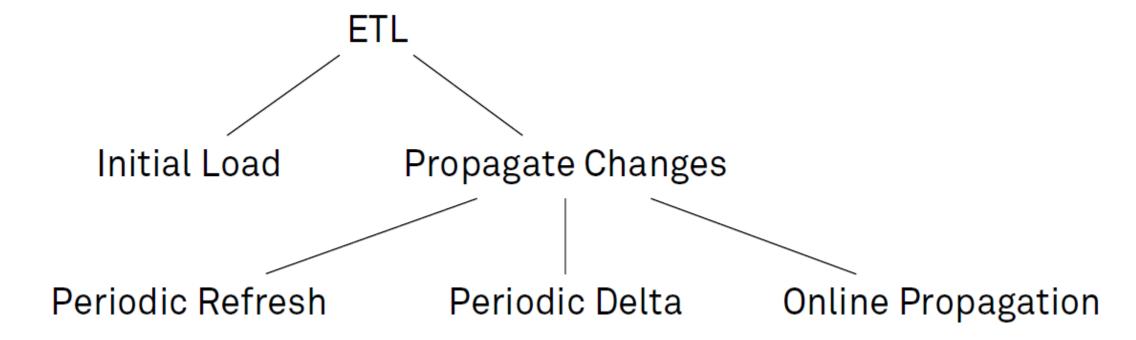
- No user queries (some do it)
- Sequential operations (few) on large data volumes
 - Performed by central ETL logic
 - Easily restarted
 - No need for locking, logging, etc.
 - RDBMS or flat files? (DBMS have become better at this)
- Finished dimensions copied from staging area to relevant marts

Transaction data Data Warehouse Data Mart Stock **Data Staging** Storage Sales Management **Transforming** Raw data Marketing E-shop Cleaning Meta data Files Integrating Web dimensions Reporting Aggregate Precalc. Services Visualization Staging data

4

ETL Process Types

When do we run the ETL process?



5

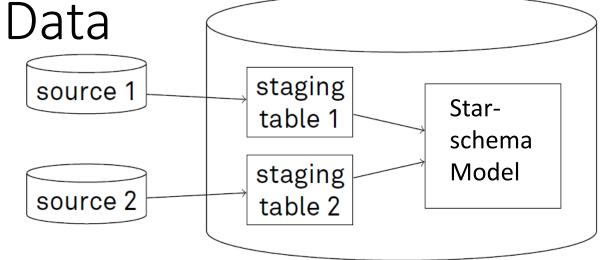
ETL Process Types

Considerations:

- Overhead on data warehouse and source sides.
 - E.g., online propagation puts a permanent burden on both sides; cannot benefit from bulk loading mechanisms
- Data Staleness
 - Frequent updates reduce staleness but increase overhead.
- Debugging, Failure Handling
 - With online/stream-based mechanisms, it may be more difficult to track down problems.
- Different process for different flavors of data?
 - E.g., periodic refresh may work well for small (dimension) tables.

Data Extraction: Getting Data

- Tool selection depends on data source
 - database, XML, flat files, etc.
- Use SQL, XQuery, Perl, awk, etc. to query the source system
- Often:
 - Extract to flat file (e.g., CSV)
 - Then bulk-load into staging table
- Data compression for large data transfers
- Data encryption if transfer over public networks



Data Extraction: Capturing Data Changes

Detecting changes is a challenge:

Audit Columns

- E.g., "last modified" timestamp
- Set timestamps or "new" flags on every row update. How?
- Unset "new" flags on every load into the DW. Why?

Full Diff

- Keep old snapshot and diff it with the current version.
- Thorough, will detect any change
- Resource-intensive: need to move and scan large volumes
- Optimization: Hashes/checksums to speed up comparison

Database Log Scraping

- The database's write-ahead log contains all change inform.
- Scraping the log may get messy, though.
- Variant: create a message stream ODS → DW

Message Queue Monitoring

• source system must use a messaging framework; then low overhead

Data Cleansing

• After extraction, data must be **normalized** and **cleaned**.

	Name	Street	Clty	Phone
<i>r</i> ₁	Sweetlegal Investments Inc	202 North	Redmond	425-444-5555
<i>r</i> ₂	ABC Groceries Corp	Amphitheatre Pkwy	Mountain View	4081112222
r ₃	Cable television services	One Oxford Dr	Cambridge	617-123-4567

	Name	Street	Clty	Phone
s ₁	Sweet legal Invesments Inc.	202 N	Redmond	
s ₂	ABC Groceries Corpn.	Amphitheetre Parkway	Mountain View	
s_3	Cable Services	One Oxford Dr	Cambridge	6171234567

Data Quality (Revision)

- Data almost never has decent quality
- Data in DW must be:
 - Precise
 - DW data must match known numbers or explanation needed
 - Complete
 - DW has all relevant data, and the users know
 - Consistent
 - No contradictory data: aggregates fit with detail data
 - Unique
 - The same thing is called the same and has the same key (customers)
 - Timely
 - Data is updated "frequently enough" and the users know when

Data Cleansing

• Problem:

- Real-world data is messy.
- Consistency rules in the OLTP system?
 - A lot of data is still entered by people.
 - Data warehouses serve as an integration platform.
- Typical cleaning and normalization tasks:
 - Correct spelling errors.
 - Handle missing / null values
 - Identify record matches and duplicates.
 - Resolve conflicts and inconsistencies.
 - Normalize ("conform") data.

Data Cleansing: Primitives

Similarity Join

- Bring together similar data
- For record matching and deduplication

Clustering

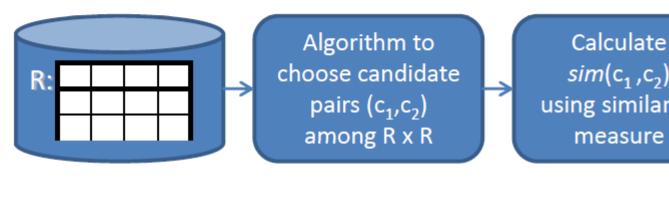
- Put items into groups, based on "similarity"
- E.g., pre-processing for deduplication

Parsing

- E.g., source table has an 'address' column; whereas target table has 'street',
 'zip', and 'city' columns
- Might have to identify pieces of a string to normalize (e.g., "Road" → "Rd")

Data Cleansing: Similarity Join

Process of identifying duplicates:



 $sim(c_1, c_2)$ using similarity measure

Apply similarity thresholds

> Nonduplicates

Duplicates

- Similarity measures:
 - edit distance, Jaccard coefficient, Soundex
- Threshold of similarity is important
 - Limits the number of candidates for duplicates!

PA220 DB for Analytics October 16, 2023 13

Data Cleansing: Detecting Inconsistencies

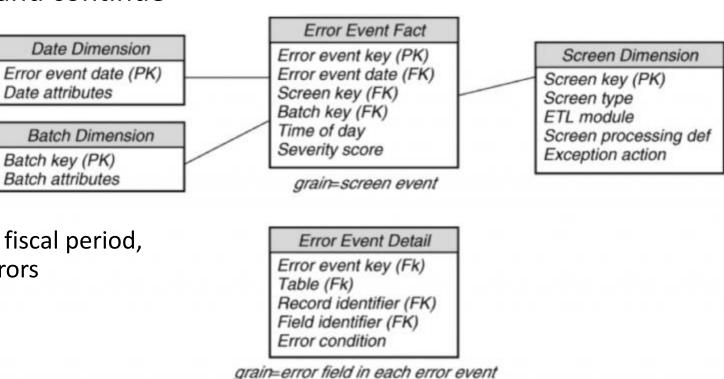
- Data (quality) screening system:
 - Column screens: Test data within a column
 - Correct value ranges, value formatting, null values?
 - Detect random/noise values
 - Structure screens: Relationship across columns
 - Two or more columns implement a hierarchy (e.g., a series of m:n relationships)
 - Foreign key relationships between tables
 - Combination of columns is a valid item, e.g., an existing postal address
 - Business rule screens: Data plausible according to business rules?
 - E.g., customer status X requires Y years of loyalty, Z EUR total revenue, etc.

Data Cleansing: Error Handling

- Halting the process on error
 - requires manual intervention diagnose, restart/resume the job or abort it
- Create a suspense file
 - Log the errors in a side channel for later processing
 - Not clear when to handle its contents fix the records and re-introduce to the job?
 - until these data items are restored, the overall DB integrity is questionable
- Tag the data and continue
 - Bad fact records create an audit dimension
 - Bad dimension data use unique error values
 - Best solution whenever possible

Data Cleansing: Error Handling

- A special error event schema can be created
 - as a result of "Tag the data and continue"
- Grain corresponds to the error appearance
 - Batch dim info of the job
 - Date dim not a minute and sec of the error
 - rather a weekday, last day of fiscal period, to constraint / summarize errors
 - Time of day timestamp
 when the error occurred



Data Cleansing: Error Handling

- Audit dimension
 - attached to the resulting fact table
 - created in data cleansing
 - stores audit conditions
- Example
 - an ETL job finished with no error
 - a new audit rec. describing it is created
 - all new fact records are associated to it
- Audit Key (PK)

 ETL Master Version
 Currency Conversion Version
 Allocation Version
 Missing Data Flag
 Data Supplied Flag
 Unlikely Value Flag
- if an error occurred (e.g., out of bounds)
 - another audit rec is created, and the failing fact records get attached

Improving Data Quality

- Appoint "data stewards" responsible for data quality
 - A given steward has the responsibility for certain tables
 - Includes manual inspections and corrections!
- DW-controlled improvement
 - Default values
 - "Not yet assigned 157" note to data steward
- Source-controlled improvements
 - The optimal?
- Construct programs that check data quality
 - Are totals as expected?
 - Do results agree with alternative source?
- Do not fix all problems with data quality
 - Allow management to see "weird" data in their reports?

Data Transformation: Schema Integration

- Different source systems, types, and schemas must be integrated.
- Infer mapping between schemas (automatically)?

• Tools:

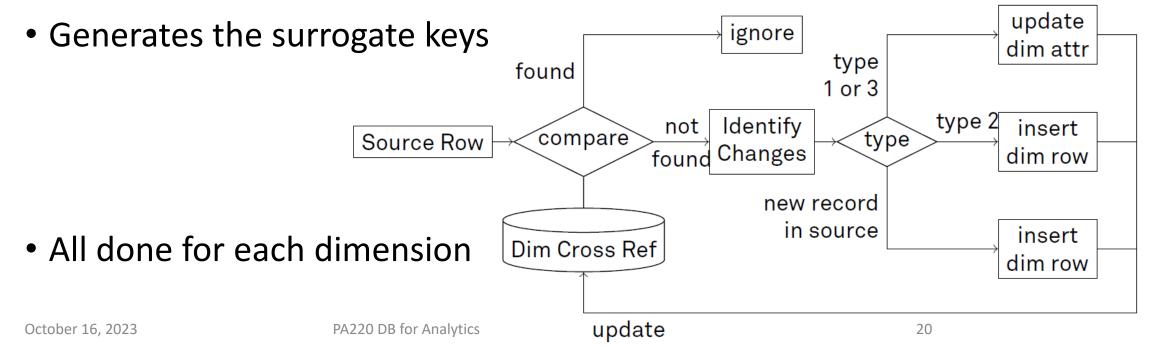
- Compare table and attribute names; consider synonyms and homonyms
- Infer data types/formats and mapping rules
- Techniques like similarity joins and deduplication.

• Still:

Often a lot of manual work needed.

Data Loading: Prepare Dimension Tables

- Checks
 - dimension row is new
 - attributes in dimension have changed
 - handle updates respecting SCD type of dimension



Data Loading: Prepare Dimension Tables - Problems

- "upsert" update if exists, else insert (aka SQL-based update)
 - often a real performance killer
 - better: separate updates and bulk-load inserts
- Generate and find dimension surrogate keys
 - e.g., use key generator of back-end DB
 - Maintain "Dim Cross Ref" table in memory or in back-end DB
- Dimensions must be updated before facts
 - The relevant dimension rows for new facts must be in place
 - Special key considerations if initial load must be performed again
- May re-compute aggregates (Type 1 updates)
 - again, bulk-loading/changing is a good choice

Data Loading: Performance Tips

1. Turn off logging

- Databases maintain a write-ahead log to implement failure tolerance mechanisms.
- Row-by-row logging causes huge overhead.
- 2. Disable indexes and reindex after updates
- 3. Pre-sort data
 - Depending on system, may speed up index construction.
 - Additional benefit: may result in better physical layout

4. Truncate table

When loading from scratch

Loading Data – Performance Tips

5. Enable "fast mode"

- If data is prepared properly, database may use faster parsing mechanisms
- e.g., "copy from" command

6. Make sure data is correct

 Transformation, field truncation, error reporting may slow down bulk-loading significantly

7. Temporarily disable integrity control

- Avoid checking during load, but do it in bulk, too.
- e.g., foreign keys in the fact table

Loading Data – Performance Tips

8. Parallelization

- Dimensions can be loaded concurrently
- Fact tables can be loaded concurrently
 - Partitions can be loaded concurrently
 - when horizontal partitioning of fact tables is used

Hints on ETL Design

- Do not try to implement all transformations in one step!
- Do one (or just a few) thing(s) at the time
 - Copy source data one-one to staging area
 - Compute deltas
 - Only if doing incremental load
 - Handle versions and generate DW keys
 - Versions only if handling slowly changing dimensions
 - Implement complex transformations
 - Load dimensions
 - Load facts

Issues

- Files versus streams/pipes
 - Streams/pipes: no disk overhead, fast throughput
 - Files: easier restart, often the only possibility
- ETL tool or not
 - Code: easy start, co-existence with IT infrastructure
 - Tool: better productivity on subsequent projects
- Load frequency
 - ETL time depends on processed data volumes.
 - Daily load is much faster than monthly.
 - Applies to all steps in the ETL process
- Should DW be on-line 24/7?
 - Use partitions or several sets of tables

Summary

- ETL is very time consuming (80% of entire project)
 - Needs to be implemented as a sequence of many small steps
 - Data quality is crucial fixed in ETL
- Extraction of data from source systems might be very time consuming
 - Incremental approach is suggested
- Transformation into DW format includes many steps, such as
 - building key, cleansing the data, handle inconsistent/duplicate data, etc.
- Load includes the loading of the data in the DW, updating indexes, computing pre-aggregates, etc.