
PB007 Software Engineering I — Use Case Diagram II, Textual Specifications1

Use Case Diagram II,
Textual Specifications

PB007 Software Engineering I

Lukáš Daubner

daubner@mail.muni.cz



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications2

Use Case Diagram – There is more…

̶ Diagram is more expressive

̶ Inheritance (generalization) of actors

̶ Inheritance (generalization) of use cases

̶ “Shared” use case – Include

̶ “Modular” use case – Extend



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications3

Actors Generalization

̶ Relationship between the more general and specialized actors

̶ For simplifying the diagram

̶ General actors are often abstract, i.e., not a real role

̶ A descending actor inherits all roles and parent link. Every time it 

is expected the use of a parent actor, we can use one of the 

descendants



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications4

Actors Generalization – Example



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications5

Use Case Generalization

̶ relationship between the general and specialized use cases

̶ A specialized use cases inherits the properties, and add new 

features by overloading (changing) the inherited properties
̶ It cannot overload the parents’ extension points

̶ The textual specification should reflect those changes

̶ Parental use cases can be abstract (recommended)
̶ Either no specification or incomplete specification of the flow of events



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications6

Use Case Generalization – Example



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications7

Include

̶ Specialized type of relationship

̶ Allows you to allocate repetitive steps in several use cases in 

separate use case

̶ The basic use case is incomplete without all the embedded use 

cases



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications8

Include



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications9

Extend

̶ Specialized type of relationship

̶ Allows insertion of new behaviour into base use case
̶ The extension is transparent for the use case – the base do not know about extensions

̶ It is inserted at specifically defined points (extension points)

̶ The extending use cases hooks on the extension points
̶ It is possible to define conditions or hook multiple use cases on one extension point



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications10

Extend



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications11

Textual Specification of Use Cases

̶ Detailed and structured description of a use case

̶ It should include:
̶ Name and ID

̶ Brief description

̶ Primary and secondary actors

̶ Input and output conditions

̶ Main flow of events

̶ Alternative flow of events



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications12

Flow of Events – Main Flow

̶ Sequence of steps of interaction with the system in the ideal case
̶ (free from errors, interruptions, …)

̶ Written as: <step id> <actor/system> <action>

̶ Begins with some action from primary actor
̶ Recommended form is: 1. he use case begins when <actor> <action>

̶ You can use keywords IF, FOR, WHILE



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications13

Flow of Events – Example

̶ 1. Use case starts when Customer opens rental form

̶ 2. INCLUDE(Find Available Zeppelins)

̶ 3. System displays zeppelins available for rental

̶ 4. Customer chooses zeppelin to rent

̶ 5. WHILE form is not valid

̶ 5.1 Customer fills personal information

̶ 6. Customer submits the form

̶ EXTENSION POINT(NotifyRental)

̶ 7. System saves rental request



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications14

Flow of Events – Alternative Flow

̶ The same formatting rules as for the main flow

̶ Represents deviations from the main flow due to errors or 

interruptions

̶ It can also be used to capture more complex branching, such as 

situations that are not exactly known if and when they will occur



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications15

Work, work

In this seminar…

̶ Activity – Malicious use cases

̶ Visual Paradigm demo

̶ Team work on project
̶ Use case diagram II



PB007 Software Engineering I — Use Case Diagram II, Textual Specifications16

You gotta do what you gotta do

Task for this week

̶ Revise the use case diagram and think using the new constructs
̶ At least one include/extend should be applicable

̶ Wire a brief description for all use cases
̶ ~2 sentences

̶ Choose 3 use cases and create full textual specification
̶ Choose the more complex ones to make more sense

̶ Mark them on diagram (colour)

̶ Do your part in peer review
̶ Link to roster is in study materials


