
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 1: Introduction

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan1.2Database System Concepts - 7th Edition

Before we Start

▪ Slides in English – talk in Czech

▪ Exercises in groups do not cover all the topics from the lessons

▪ Examination by tests:

• Exactly one correct answer for exercises tests

• One or more correct answers for the course examination

▪ A successful exercises test is a condition for the course examination

registration

©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 7th Edition

Outline

▪ Database-System Applications

▪ Purpose of Database Systems

▪ View of Data

▪ Database Languages

▪ Database Design

▪ Database Engine

▪ Database Architecture

▪ Database Users and Administrators

▪ History of Database Systems

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 7th Edition

Database Systems

▪ DBMS contains information about a particular enterprise

• Collection of interrelated data

• Set of programs to access the data

• An environment that is both convenient and efficient to use

▪ Database systems are used to manage collections of data that are:

• Highly valuable

• Relatively large size

• Accessed by multiple users and applications, often at the same

time.

▪ A modern database system is a complex software system whose task

is to manage a large, complex collection of data.

▪ Databases touch all aspects of our lives

©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 7th Edition

Database Applications Examples

▪ Enterprise Information

• Sales: customers, products, purchases

• Accounting: payments, receipts, assets

• Human Resources: Information about employees, salaries, payroll

taxes.

▪ Manufacturing: management of production, inventory, orders, supply

chain.

▪ Banking and finance

• customer information, accounts, loans, and banking transactions.

• Credit card transactions

• Finance: sales and purchases of financial instruments (e.g., stocks

and bonds; storing real-time market data

▪ Universities: registration, grades

©Silberschatz, Korth and Sudarshan1.6Database System Concepts - 7th Edition

Database Applications Examples (Cont.)

▪ Airlines: reservations, schedules

▪ Telecommunication: records of calls, texts, and data usage, generating

monthly bills, maintaining balances on prepaid calling cards

▪ Web-based services

• Online retailers: order tracking, customized recommendations

• Online advertisements

▪ Document databases

▪ Navigation systems: For maintaining the locations of varies places of

interest along with the exact routes of roads, train systems, buses, etc.

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 7th Edition

Purpose of Database Systems

▪ Data redundancy and inconsistency: data is stored in multiple file

formats resulting in duplication of information in different files

▪ Difficulty in accessing data

• Need to write a new program to carry out each new task

▪ Data isolation

• Multiple files and formats

▪ Integrity problems

• Integrity constraints (e.g., account balance > 0) become “buried”
in program code rather than being stated explicitly

• Hard to add new constraints or change existing ones

In the early days, database applications were built directly on top of file

systems, which leads to:

©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 7th Edition

Purpose of Database Systems (Cont.)

▪ Atomicity of updates

• Failures may leave database in an inconsistent state with partial

updates carried out

• Example: Transfer of funds from one account to another should either

be completed or not happen at all

▪ Concurrent access by multiple users

• Concurrent access needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

▪ Ex: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time

▪ Security problems

• Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 7th Edition

University Database Example

▪ In this text we will be using a university database to illustrate all the

concepts

▪ Data consists of information about:

• Students

• Instructors

• Classes

▪ Application program examples:

• Add new students, instructors, and courses

• Register students for courses, and generate class rosters

• Assign grades to students, compute grade point averages (GPA) and

generate transcripts

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 7th Edition

View of Data

▪ A database system is a collection of interrelated data and a set of

programs that allow users to access and modify these data.

▪ A major purpose of a database system is to provide users with an abstract

view of the data.

• Data models

▪ A collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints.

• Data abstraction

▪ Hide the complexity of data structures to represent data in the

database from users through several levels of data abstraction.

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 7th Edition

Data Models

▪ A collection of tools for describing

• Data

• Data relationships

• Data semantics

• Data constraints

▪ Relational model

▪ Entity-Relationship data model (mainly for database design)

▪ Object-based data models (Object-oriented and Object-relational)

▪ Semi-structured data model (XML)

▪ Other older models:

• Network model

• Hierarchical model

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 7th Edition

Relational Model

▪ All the data is stored in various tables.

▪ Example of tabular data in the relational model

Columns

Rows

Ted Codd

Turing Award 1981

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 7th Edition

A Sample Relational Database

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 7th Edition

Levels of Abstraction

▪ Physical level: describes how a record (e.g., instructor) is stored.

▪ Logical level: describes data stored in database, and the relationships

among the data.

type instructor = record

ID : string;

name : string;

dept_name : string;

salary : integer;

end;

▪ View level: application programs hide details of data types. Views can

also hide information (such as an employee’s salary) for security

purposes.

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 7th Edition

View of Data

An architecture for a database system

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 7th Edition

Instances and Schemas

▪ Analogously to types and variables in programming languages

▪ Logical Schema – the overall logical structure of the database

• Example: The database consists of information about a set of

customers and accounts in a bank and the relationship between them

▪ Analogous to type information of a variable in a program

▪ Physical Schema – the overall physical structure of the database

▪ Instance – the actual content of the database at a particular point in time

• Analogous to the value of a variable

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 7th Edition

Physical Data Independence

▪ Physical Data Independence – the ability to modify the physical

schema without changing the logical schema

• Applications depend on the logical schema

• In general, the interfaces between the various levels and

components should be well defined so that changes in some parts

do not seriously influence others.

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 7th Edition

Data Definition Language (DDL)

▪ Specification notation for defining the database schema

Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

▪ DDL compiler generates a set of table templates stored in a data

dictionary

▪ Data dictionary contains metadata (i.e., data about data)

• Database schema

• Integrity constraints

▪ Primary key (ID uniquely identifies instructors)

• Authorization

▪ Who can access what

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 7th Edition

Data Manipulation Language (DML)

▪ Language for accessing and updating the data organized by the

appropriate data model

• DML also known as query language

▪ There are basically two types of data-manipulation language

• Procedural DML -- require a user to specify what data are needed

and how to get those data.

• Declarative DML -- require a user to specify what data are needed

without specifying how to get those data.

▪ Declarative DMLs are usually easier to learn and use than are procedural

DMLs.

▪ Declarative DMLs are also referred to as non-procedural DMLs

▪ The portion of a DML that involves retrieval of information is called a

query language.

©Silberschatz, Korth and Sudarshan1.20Database System Concepts - 7th Edition

SQL Query Language

▪ SQL query language is nonprocedural. A query takes as input several

tables (possibly only one) and always returns a single table.

▪ Example to find all instructors in Comp. Sci. dept

select name

from instructor

where dept_name = 'Comp. Sci.'

▪ To be able to compute complex functions SQL is usually embedded in

some higher-level language

▪ Application programs generally access databases through one of

• Language extensions to allow embedded SQL

• Application program interface (e.g., ODBC/JDBC – Open/Java

Database Connectivity) which allow SQL queries to be sent to a

database

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 7th Edition

Database Access from Application Program

▪ Non-procedural query languages such as SQL are not as powerful as a

universal Turing machine.

▪ SQL does not support actions such as input from users, output to

displays, or communication over the network.

▪ Such computations and actions must be written in a host language, such

as C/C++, Java or Python, with embedded SQL queries that access the

data in the database.

▪ Application programs -- are programs that are used to interact with the

database in this fashion.

©Silberschatz, Korth and Sudarshan1.22Database System Concepts - 7th Edition

Database Design

▪ Logical Design – Deciding about the database schema. Database

design requires that we find a “good” collection of relation schemas.

• Application decision – what attributes should we record in the

database?

• Computer Science decision – what relation schemas should we

have and how should the attributes be distributed among the

various relation schemas?

▪ Physical Design – deciding on the physical layout of the database

The process of designing the general structure of the database:

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 7th Edition

Database Engine

▪ A database system is partitioned into modules that deal with each of the

responsibilities of the overall system.

▪ The functional components of a database system can be divided into

• The storage manager,

• The query processor component,

• The transaction management component.

©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 7th Edition

Storage Manager

▪ A program module that provides the interface between the low-level data

stored in the database and the application programs and queries

submitted to the system.

▪ The storage manager is responsible to the following tasks:

• Interaction with the OS file manager

• Efficient storing, retrieving and updating of data

▪ The storage manager components include:

• Authorization and integrity manager

• Transaction manager

• File manager

• Buffer manager

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 7th Edition

Storage Manager (Cont.)

▪ The storage manager implements several data structures as part of the

physical system implementation:

• Data files -- store the database itself

• Data dictionary -- stores metadata about the structure of the

database, in particular the schema of the database.

• Indices -- can provide fast access to data items. A database index

provides pointers to those data items that hold a particular value.

©Silberschatz, Korth and Sudarshan1.26Database System Concepts - 7th Edition

Query Processor

▪ The query processor components include:

• DDL interpreter -- interprets DDL statements and records the

definitions in the data dictionary.

• DML compiler -- translates DML statements in a query language into

an evaluation plan consisting of low-level instructions that the query

evaluation engine understands.

▪ The DML compiler performs query optimization; that is, it picks

the lowest cost evaluation plan from among the various equivalent

alternatives.

• Query evaluation engine -- executes low-level instructions generated

by the DML compiler.

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 7th Edition

Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 7th Edition

Transaction Management

▪ A transaction is a collection of operations that performs a single logical

function in a database application

▪ Transaction-management component ensures that the database

remains in a consistent (correct) state despite system failures (e.g.,

power failures and operating system crashes) and transaction failures.

▪ Concurrency-control manager controls the interaction among the

concurrent transactions, to ensure the consistency of the database.

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Database Architecture

▪ Centralized databases

• One to a few cores, shared memory

▪ Client-server,

• One server machine executes work on behalf of multiple client

machines.

▪ Parallel databases

• Many core shared memory

• Shared disk

• Shared nothing

▪ Distributed databases

• Geographical distribution

• Schema/data heterogeneity

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Database Architecture

(Centralized/Shared-Memory)

©Silberschatz, Korth and Sudarshan1.31Database System Concepts - 7th Edition

Database Applications

▪ Two-tier architecture -- the application resides at the client machine,

where it invokes database system functionality at the server machine

▪ Three-tier architecture -- the client machine acts as a front end and

does not contain any direct database calls.

• The client end communicates with an application server, usually

through a forms interface.

• The application server in turn communicates with a database

system to access data.

Database applications are usually partitioned into two or three parts

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Two-tier and three-tier architectures

©Silberschatz, Korth and Sudarshan1.33Database System Concepts - 7th Edition

Database Users

©Silberschatz, Korth and Sudarshan1.34Database System Concepts - 7th Edition

Database Administrator

▪ Schema definition

▪ Storage structure and access-method definition

▪ Schema and physical-organization modification

▪ Granting of authorization for data access

▪ Routine maintenance

▪ Periodically backing up the database

▪ Ensuring that enough free disk space is available for normal

operations, and upgrading disk space as required

▪ Monitoring jobs running on the database

A person who has central control over the system is called a database

administrator (DBA). Functions of a DBA include:

©Silberschatz, Korth and Sudarshan1.35Database System Concepts - 7th Edition

History of Database Systems

▪ 1950s and early 1960s:

• Data processing using magnetic tapes for storage

▪ Tapes provided only sequential access

• Punched cards for input

▪ Late 1960s and 1970s:

• Hard disks allowed direct access to data

• Network and hierarchical data models in widespread use

• Ted Codd defines the relational data model

▪ Would win the ACM Turing Award for this work

▪ IBM Research begins System R prototype

▪ UC Berkeley (Michael Stonebraker) begins Ingres prototype

▪ Oracle releases first commercial relational database

• High-performance (for the era) transaction processing

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 7th Edition

History of Database Systems (Cont.)

▪ 1980s:

• Research relational prototypes evolve into commercial systems

▪ SQL becomes industrial standard

• Parallel and distributed database systems

▪ Wisconsin, IBM, Teradata

• Object-oriented database systems

▪ 1990s:

• Large decision support and data-mining applications

• Large multi-terabyte data warehouses

• Emergence of Web commerce

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

History of Database Systems (Cont.)

▪ 2000s

• Big data storage systems

▪ Google BigTable, Yahoo PNuts, Amazon,

▪ “NoSQL” systems.

• Big data analysis: beyond SQL

▪ Map reduce and friends

▪ 2010s

• SQL reloaded

▪ SQL front end to Map Reduce systems

▪ Massively parallel database systems

▪ Multi-core main-memory databases

©Silberschatz, Korth and Sudarshan1.38Database System Concepts - 7th Edition

End of Chapter 1

	Snímek 1: Chapter 1: Introduction
	Snímek 2: Before we Start
	Snímek 3: Outline
	Snímek 4: Database Systems
	Snímek 5: Database Applications Examples
	Snímek 6: Database Applications Examples (Cont.)
	Snímek 7: Purpose of Database Systems
	Snímek 8: Purpose of Database Systems (Cont.)
	Snímek 9: University Database Example
	Snímek 10: View of Data
	Snímek 11: Data Models
	Snímek 12: Relational Model
	Snímek 13: A Sample Relational Database
	Snímek 14: Levels of Abstraction
	Snímek 15: View of Data
	Snímek 16: Instances and Schemas
	Snímek 17: Physical Data Independence
	Snímek 18: Data Definition Language (DDL)
	Snímek 19: Data Manipulation Language (DML)
	Snímek 20: SQL Query Language
	Snímek 21: Database Access from Application Program
	Snímek 22: Database Design
	Snímek 23: Database Engine
	Snímek 24: Storage Manager
	Snímek 25: Storage Manager (Cont.)
	Snímek 26: Query Processor
	Snímek 27: Query Processing
	Snímek 28: Transaction Management
	Snímek 29: Database Architecture
	Snímek 30: Database Architecture (Centralized/Shared-Memory)
	Snímek 31: Database Applications
	Snímek 32: Two-tier and three-tier architectures
	Snímek 33: Database Users
	Snímek 34: Database Administrator
	Snímek 35: History of Database Systems
	Snímek 36: History of Database Systems (Cont.)
	Snímek 37: History of Database Systems (Cont.)
	Snímek 38: End of Chapter 1

