
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 2: Intro to Relational Model

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan2.2Database System Concepts - 7th Edition

Outline

▪ Structure of Relational Databases

▪ Database Schema

▪ Keys

▪ University Schema Diagram

▪ Relational Query Languages

▪ The Relational Algebra

©Silberschatz, Korth and Sudarshan2.3Database System Concepts - 7th Edition

Example of a Instructor Relation

attributes

(or columns)

tuples

(or rows)

©Silberschatz, Korth and Sudarshan2.4Database System Concepts - 7th Edition

Relation Schema and Instance

▪ A1, A2, …, An are attributes

▪ R = (A1, A2, …, An) is a relation schema – all attributes in R are

different

Example:

instructor = (ID, name, dept_name, salary)

▪ A relation instance r defined over schema R is denoted by r (R)

▪ The current values of a relation are specified by a table

▪ An element t of relation r is called a tuple and is represented by

a row in a table

©Silberschatz, Korth and Sudarshan2.5Database System Concepts - 7th Edition

Attributes

▪ The set of allowed values for each attribute is called the domain of the

attribute

▪ Attribute values are (normally) required to be atomic; that is, indivisible

▪ The special value null is a member of every domain. Indicated that the

value is “unknown”

▪ The null value causes complications in the definition of many operations

©Silberschatz, Korth and Sudarshan2.6Database System Concepts - 7th Edition

Relations are Unordered

▪ Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

▪ Example: instructor relation with unordered tuples

©Silberschatz, Korth and Sudarshan2.7Database System Concepts - 7th Edition

Database Schema

▪ Database schema -- is the logical structure of the database.

▪ Database instance -- is a snapshot of the data in the database at a given

instant in time.

▪ Example:

• schema: instructor (ID, name, dept_name, salary)

• Instance:

©Silberschatz, Korth and Sudarshan2.8Database System Concepts - 7th Edition

Keys

▪ Let K R

▪ K is a superkey of R if values for K are sufficient to identify a unique tuple

of each possible relation r(R)

• Example: {ID} and {ID,name} are both superkeys of instructor.

▪ Superkey K is a candidate key if K is minimal

Example: {ID} is a candidate key for Instructor

▪ One of the candidate keys is selected to be the primary key.

• Which one?

▪ Foreign key constraint: Value in one relation must appear in another

• Referencing relation

• Referenced relation

• Example: dept_name in instructor is a foreign key from instructor

referencing department

©Silberschatz, Korth and Sudarshan2.9Database System Concepts - 7th Edition

Schema Diagram for University Database

©Silberschatz, Korth and Sudarshan2.10Database System Concepts - 7th Edition

Relational Query Languages

▪ Procedural versus non-procedural, or declarative

▪ “Pure” languages:

• Relational algebra

• Tuple relational calculus

• Domain relational calculus

▪ The above 3 pure languages are equivalent in computing power

▪ We will concentrate in this chapter on relational algebra

• Consists of 6 basic operations

©Silberschatz, Korth and Sudarshan2.11Database System Concepts - 7th Edition

Relational Algebra

▪ A procedural language consisting of a set of operations that take one or

two relations as input and produce a new relation as their result.

▪ Six basic operators

• select:

• project:

• union:

• set difference: –

• Cartesian product: x

• rename:

©Silberschatz, Korth and Sudarshan2.12Database System Concepts - 7th Edition

Select Operation

▪ The select operation retrieves tuples that satisfy a given predicate.

▪ Notation: p (r)

▪ p is called the selection predicate

▪ Example: select those tuples of the instructor relation where the instructor
is in the “Physics” department.

• Query

 dept_name=“Physics” (instructor)

• Result

©Silberschatz, Korth and Sudarshan2.13Database System Concepts - 7th Edition

Select Operation (Cont.)

▪ We allow comparisons using

=, , >, . <.

in the selection predicate.

▪ We can combine several predicates into a larger predicate by using the
connectives:

 (and), (or), (not)

▪ Example: Find the instructors in Physics with a salary greater than
$90,000, we write:

 dept_name=“Physics” salary > 90,000 (instructor)

▪ The select predicate may include comparisons between two attributes.

• Example, find all departments whose name is the same as their
building name:

• dept_name=building (department)

©Silberschatz, Korth and Sudarshan2.14Database System Concepts - 7th Edition

Project Operation

▪ A unary operation that returns its argument relation, with certain attributes

left out.

▪ Notation:

 A1,A2,A3 ….Ak
(r)

where A1, A2, …, Ak are attribute names and r is a relation name.

▪ The result is defined as the relation of k columns obtained by erasing the

columns that are not listed

▪ Duplicate rows are removed from the result since relations are sets

©Silberschatz, Korth and Sudarshan2.15Database System Concepts - 7th Edition

Project Operation Example

▪ Example: eliminate the dept_name attribute from instructor

▪ Query:

ID, name, salary (instructor)

▪ Result:

©Silberschatz, Korth and Sudarshan2.16Database System Concepts - 7th Edition

Composition of Relational Operations

▪ The result of a relational-algebra operation is a relation and therefore

more relational-algebra operations can be composed together into a

relational-algebra expression.

▪ Consider the query: Find the names of all instructors in the Physics

department.

name(dept_name =“Physics” (instructor))

▪ Instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

©Silberschatz, Korth and Sudarshan2.17Database System Concepts - 7th Edition

Cartesian-Product Operation

▪ The Cartesian-product operation (denoted by X) allows us to combine

information from two relations.

▪ Example: the Cartesian product of the relations instructor and teaches is

written as:

instructor X teaches

▪ We construct a tuple of the result out of each possible pair of tuples: one

from the instructor relation and one from the teaches relation (see next

slide)

▪ Since the instructor ID appears in both relations we distinguish between

these attributes by attaching to the attribute the name of the relation from

which the attribute originally came.

• instructor.ID

• teaches.ID

©Silberschatz, Korth and Sudarshan2.18Database System Concepts - 7th Edition

The instructor X teaches table

©Silberschatz, Korth and Sudarshan2.19Database System Concepts - 7th Edition

Join Operation

▪ The Cartesian-Product

instructor X teaches

associates every tuple of the instructor with every tuple of teaches.

• Most of the resulting rows have information about instructors who did

NOT teach a particular course.

▪ To get only those tuples of “instructor X teaches “ that pertain to

instructors and the courses that they taught, we write:

 instructor.id = teaches.id (instructor x teaches)

• We get only those tuples of “instructor X teaches” that pertain to

instructors and the courses that they taught.

▪ The result of this expression, shown in the next slide

©Silberschatz, Korth and Sudarshan2.20Database System Concepts - 7th Edition

Join Operation (Cont.)

▪ The table corresponding to:

 instructor.id = teaches.id (instructor x teaches))

©Silberschatz, Korth and Sudarshan2.21Database System Concepts - 7th Edition

Join Operation (Cont.)

▪ The join operation allows us to combine a select operation and a

Cartesian-Product operation into a single operation.

▪ Consider relations r (R) and s (S)

▪ Let “theta” be a predicate on attributes in the schema R “union” S. The

join operation r ⋈𝜃 s is defined as follows:

▪ 𝑟 ⋈𝜃 𝑠 = 𝜎𝜃 (𝑟 × 𝑠)

▪ Thus

 instructor.id = teaches.id (instructor x teaches)

▪ Can equivalently be written as

instructor ⋈ Instructor.id = teaches.id teaches.

©Silberschatz, Korth and Sudarshan2.22Database System Concepts - 7th Edition

Union Operation

▪ The union operation allows to combine two relations

▪ Notation: r s

▪ For r s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2nd

column of r deals with the same type of values as does the

2nd column of s)

▪ Example: to find all courses taught in the Fall 2017 semester or in the

Spring 2018 semester or in both

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

©Silberschatz, Korth and Sudarshan2.23Database System Concepts - 7th Edition

Union Operation (Cont.)

▪ Result of:

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

©Silberschatz, Korth and Sudarshan2.24Database System Concepts - 7th Edition

Set-Intersection Operation

▪ The set-intersection operation allows us to find tuples that are in both the

input relations.

▪ Notation: r s

▪ Assume:

• r, s have the same arity

• attributes of r and s are compatible

▪ Example: Find the set of all courses taught in both the Fall 2017 and the

Spring 2018 semesters.

course_id (semester=“Fall” Λ year=2017 (section))

course_id (semester=“Spring” Λ year=2018 (section))

• Result

©Silberschatz, Korth and Sudarshan2.25Database System Concepts - 7th Edition

Set Difference Operation

▪ The set-difference operation allows us to find tuples that are in one relation

but are not in another.

▪ Notation r – s

▪ Set differences must be taken between compatible relations.

• r and s must have the same arity

• attribute domains of r and s must be compatible

▪ Example: to find all courses taught in the Fall 2017 semester, but not in the

Spring 2018 semester

course_id (semester=“Fall” Λ year=2017 (section)) −

course_id (semester=“Spring” Λ year=2018 (section))

• Notice:

r s = r – (r – s) = s – (s – r)

©Silberschatz, Korth and Sudarshan2.26Database System Concepts - 7th Edition

The Assignment Operation

▪ It is convenient at times to write a relational algebra expression by

assigning parts of it to temporary relation variables.

▪ The assignment operation is denoted by and works like an assignment

in a programming language.

▪ Example: Find all instructors in the “Physics” and Music departments.

Physics dept_name=“Physics” (instructor)

Music dept_name=“Music” (instructor)

Physics Music

▪ With the assignment operation, a query can be written as a sequential

program consisting of a series of assignments followed by an expression

whose value is displayed as the result of the query.

©Silberschatz, Korth and Sudarshan2.27Database System Concepts - 7th Edition

The Rename Operation

▪ The results of relational algebra expressions do not have a name that we

can use to refer to them. The rename operator, , is provided for that

purpose

▪ The expression:

x (E)

returns the result of expression E under the name x

▪ Another form of the rename operation:

x(A1,A2, .. An) (E)

©Silberschatz, Korth and Sudarshan2.28Database System Concepts - 7th Edition

Equivalent Queries

▪ There is more than one way to write a query in relational algebra.

▪ Example: Find information about courses taught by instructors in the

Physics department with salaries greater than 90,000

▪ Query 1

 dept_name=“Physics” salary > 90,000 (instructor)

▪ Query 2

 dept_name=“Physics” (salary > 90.000 (instructor))

▪ The two queries are not identical; they are, however, equivalent -- they
give the same result on any database.

©Silberschatz, Korth and Sudarshan2.29Database System Concepts - 7th Edition

Equivalent Queries

▪ There is more than one way to write a query in relational algebra.

▪ Example: Find information about courses taught by instructors in the

Physics department

▪ Query 1

dept_name=“Physics” (instructor ⋈ instructor.ID = teaches.ID teaches)

▪ Query 2

(dept_name=“Physics” (instructor)) ⋈ instructor.ID = teaches.ID teaches

▪ The two queries are not identical; they are, however, equivalent -- they
give the same result on any database.

©Silberschatz, Korth and Sudarshan2.30Database System Concepts - 7th Edition

End of Chapter 2

	Snímek 1: Chapter 2: Intro to Relational Model
	Snímek 2: Outline
	Snímek 3: Example of a Instructor Relation
	Snímek 4: Relation Schema and Instance
	Snímek 5: Attributes
	Snímek 6: Relations are Unordered
	Snímek 7: Database Schema
	Snímek 8: Keys
	Snímek 9: Schema Diagram for University Database
	Snímek 10: Relational Query Languages
	Snímek 11: Relational Algebra
	Snímek 12: Select Operation
	Snímek 13: Select Operation (Cont.)
	Snímek 14: Project Operation
	Snímek 15: Project Operation Example
	Snímek 16: Composition of Relational Operations
	Snímek 17: Cartesian-Product Operation
	Snímek 18: The instructor X teaches table
	Snímek 19: Join Operation
	Snímek 20: Join Operation (Cont.)
	Snímek 21: Join Operation (Cont.)
	Snímek 22: Union Operation
	Snímek 23: Union Operation (Cont.)
	Snímek 24: Set-Intersection Operation
	Snímek 25: Set Difference Operation
	Snímek 26: The Assignment Operation
	Snímek 27: The Rename Operation
	Snímek 28: Equivalent Queries
	Snímek 29: Equivalent Queries
	Snímek 30: End of Chapter 2

