# Chapter 2: Intro to Relational Model 

Database System Concepts, $7^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

## Outline

- Structure of Relational Databases
- Database Schema
- Keys
- University Schema Diagram
- Relational Query Languages
- The Relational Algebra


## Example of a Instructor Relation



## Relation Schema and Instance

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema - all attributes in $R$ are different

Example:
instructor = (ID, name, dept_name, salary)

- A relation instance $r$ defined over schema $R$ is denoted by $r(R)$
- The current values of a relation are specified by a table
- An element $\boldsymbol{t}$ of relation $\boldsymbol{r}$ is called a tuple and is represented by a row in a table


## Attributes

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value null is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations


## Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Database Schema

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
- schema: instructor (ID, name, dept_name, salary)
- Instance:

| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Keys

- Let $K \subseteq R$
- $K$ is a superkey of $R$ if values for $K$ are sufficient to identify a unique tuple of each possible relation $r(R)$
- Example: $\{I D\}$ and $\{I D$, name $\}$ are both superkeys of instructor.
- Superkey $K$ is a candidate key if $K$ is minimal Example: $\{I D\}$ is a candidate key for Instructor
- One of the candidate keys is selected to be the primary key.
- Which one?
- Foreign key constraint: Value in one relation must appear in another
- Referencing relation
- Referenced relation
- Example: dept_name in instructor is a foreign key from instructor referencing department


## Schema Diagram for University Database



## Relational Query Languages

- Procedural versus non-procedural, or declarative
- "Pure" languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus
- The above 3 pure languages are equivalent in computing power
- We will concentrate in this chapter on relational algebra
- Consists of 6 basic operations


## Relational Algebra

- A procedural language consisting of a set of operations that take one or two relations as input and produce a new relation as their result.
- Six basic operators
- select: $\sigma$
- project: П
- union: $\cup$
- set difference: -
- Cartesian product: x
- rename: $\rho$


## Select Operation

- The select operation retrieves tuples that satisfy a given predicate.
- Notation: $\sigma_{p}(r)$
- $p$ is called the selection predicate
- Example: select those tuples of the instructor relation where the instructor is in the "Physics" department.
- Query

$$
\sigma_{\text {dept_name }=\text { "Physics" }} \text { (instructor) }
$$

- Result

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :--- |
| 22222 | Einstein | Physics | 95000 |
| 33456 | Gold | Physics | 87000 |

## Select Operation (Cont.)

- We allow comparisons using

$$
=, \neq,>, \geq .<. \leq
$$

in the selection predicate.

- We can combine several predicates into a larger predicate by using the connectives:

$$
\wedge(\text { and }), \vee(\text { or }), \neg(\text { not })
$$

- Example: Find the instructors in Physics with a salary greater than $\$ 90,000$, we write:

$$
\sigma_{\text {dept_name }}=\text { "Physics" } " \wedge \text { salary }>90,000 \text { (instructor) }
$$

- The select predicate may include comparisons between two attributes.
- Example, find all departments whose name is the same as their building name:
- $\sigma_{\text {dept_name=building }}$ (department)


## Project Operation

- A unary operation that returns its argument relation, with certain attributes left out.
- Notation:

$$
\Pi_{A_{1}, A_{2}, A_{3} \ldots A_{k}}(r)
$$

where $A_{1}, A_{2}, \ldots, A_{k}$ are attribute names and $r$ is a relation name.

- The result is defined as the relation of $k$ columns obtained by erasing the columns that are not listed
- Duplicate rows are removed from the result since relations are sets


## Project Operation Example

- Example: eliminate the dept_name attribute from instructor
- Query:

$$
\prod_{I D, \text { name, salary }} \text { (instructor) }
$$

- Result:

| $I D$ | name | salary |
| :---: | :--- | :---: |
| 10101 | Srinivasan | 65000 |
| 12121 | Wu | 90000 |
| 15151 | Mozart | 40000 |
| 22222 | Einstein | 95000 |
| 32343 | El Said | 60000 |
| 33456 | Gold | 87000 |
| 45565 | Katz | 75000 |
| 58583 | Califieri | 62000 |
| 76543 | Singh | 80000 |
| 76766 | Crick | 72000 |
| 83821 | Brandt | 92000 |
| 98345 | Kim | 80000 |

## Composition of Relational Operations

- The result of a relational-algebra operation is a relation and therefore more relational-algebra operations can be composed together into a relational-algebra expression.
- Consider the query: Find the names of all instructors in the Physics department.

$$
\Pi_{\text {name }}\left(\sigma_{\text {dept_name }}=\text { "Physics" }(\text { instructor })\right)
$$

- Instead of giving the name of a relation as the argument of the projection operation, we give an expression that evaluates to a relation.


## Cartesian-Product Operation

- The Cartesian-product operation (denoted by $X$ ) allows us to combine information from two relations.
- Example: the Cartesian product of the relations instructor and teaches is written as:
instructor X teaches
- We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation and one from the teaches relation (see next slide)
- Since the instructor ID appears in both relations we distinguish between these attributes by attaching to the attribute the name of the relation from which the attribute originally came.
- instructor.ID
- teaches.ID


## The instructor x teaches table

| instructor.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| $\ldots$ |
| $\ldots$ |
| 12121 | Wu | Finance | 90000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| $\ldots$ |
| $\ldots$ |
| 15151 | Mozart | Music | 40000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 15151 | Mozart | Music | 40000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 15151 | Mozart | Music | 40000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| $\ldots$ |
| $\ldots$ |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 22222 | Einstein | Physics | 95000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| $\ldots$ |
| $\ldots$ |

## Join Operation

- The Cartesian-Product
instructor X teaches
associates every tuple of the instructor with every tuple of teaches.
- Most of the resulting rows have information about instructors who did NOT teach a particular course.
- To get only those tuples of "instructor X teaches " that pertain to instructors and the courses that they taught, we write:
$\sigma_{\text {instructor.id }=\text { teaches.id }}$ (instructor $\times$ teaches )
- We get only those tuples of "instructor X teaches" that pertain to instructors and the courses that they taught.
- The result of this expression, shown in the next slide


## Join Operation (Cont.)

- The table corresponding to:

$$
\sigma_{\text {instructor.id }=\text { teaches.id }}(\text { instructor } \times \text { teaches }) \text { ) }
$$

| instructor.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| 32343 | El Said | History | 60000 | 32343 | HIS-351 | 1 | Spring | 2018 |
| 45565 | Katz | Comp. Sci. | 75000 | 45565 | CS-101 | 1 | Spring | 2018 |
| 45565 | Katz | Comp. Sci. | 75000 | 45565 | CS-319 | 1 | Spring | 2018 |
| 76766 | Crick | Biology | 72000 | 76766 | BIO-101 | 1 | Summer | 2017 |
| 76766 | Crick | Biology | 72000 | 76766 | BIO-301 | 1 | Summer | 2018 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-190 | 1 | Spring | 2017 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-190 | 2 | Spring | 2017 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-319 | 2 | Spring | 2018 |
| 98345 | Kim | Elec. Eng. | 80000 | 98345 | EE-181 | 1 | Spring | 2017 |

## Join Operation (Cont.)

- The join operation allows us to combine a select operation and a Cartesian-Product operation into a single operation.
- Consider relations $r(R)$ and $s(S)$
- Let "theta" be a predicate on attributes in the schema R "union" S . The join operation $r \bowtie_{\theta} \mathrm{s}$ is defined as follows:
- $\quad r \bowtie_{\theta} s=\sigma_{\theta}(r \times s)$
- Thus

$$
\sigma_{\text {instructor.id }=\text { teaches.id }} \text { (instructor } \times \text { teaches } \text { ) }
$$

- Can equivalently be written as

$$
\text { instructor } \bowtie_{\text {Instructor.id = teaches.id }} \text { teaches. }
$$

## Union Operation

- The union operation allows to combine two relations
- Notation: $r \cup s$
- For $r \cup s$ to be valid.

1. $r$, $s$ must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of $r$ deals with the same type of values as does the $2^{\text {nd }}$ column of $s$ )

- Example: to find all courses taught in the Fall 2017 semester or in the Spring 2018 semester or in both

```
\Picourse_id ( }\mp@subsup{\sigma}{\mathrm{ semester="Fall" ^ year=2017 (section))})\cup}{
\Pi \ourse_id ( }\mp@subsup{\sigma}{\mathrm{ semester="Spring" ^ year=2018 (section))}}{\mathrm{ (s)}
```


## Union Operation (Cont.)

- Result of:
$\prod_{\text {course_id }}\left(\sigma_{\text {semester= "Fall" }} \wedge\right.$ year=2017 $($ section $\left.)\right) \cup$
$\prod_{\text {course_id }}\left(\sigma_{\text {semester= "Spring" }} \wedge\right.$ year=2018 $($ section $)$ )

| course_id |
| :--- |
| CS-101 |
| CS-315 |
| CS-319 |
| CS-347 |
| FIN-201 |
| HIS-351 |
| MU-199 |
| PHY-101 |

## Set-Intersection Operation

- The set-intersection operation allows us to find tuples that are in both the input relations.
- Notation: $r \cap s$
- Assume:
- $r$, $s$ have the same arity
- attributes of $r$ and $s$ are compatible
- Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

$$
\begin{aligned}
& \prod_{\text {course id }}\left(\sigma_{\text {semester= "Fall" }} \text { ^ year=2017 }(\text { section })\right) \cap \\
& \prod_{\text {course_id }}\left(\sigma_{\text {semester= "Spring" } ~} \text { y year=2018 }(\text { section })\right)
\end{aligned}
$$

- Result

> course_id

CS-101

## Set Difference Operation

- The set-difference operation allows us to find tuples that are in one relation but are not in another.
- Notation $r-s$
- Set differences must be taken between compatible relations.
- $r$ and $s$ must have the same arity
- attribute domains of $r$ and $s$ must be compatible
- Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

```
\Pi course_id ( }\mp@subsup{\sigma}{\mathrm{ semester= "Fall" ^ year=2017 (section)) -}}{
\Pi course_id ( }\mp@subsup{\sigma}{\mathrm{ semester= "Spring" ^ year=2018 (section))}}{\mathrm{ )}
```

- Notice:
$r \cap s=r-(r-s)=s-(s-r)$

| course_id |
| :--- |
| CS-347 |
| PHY-101 |

## The Assignment Operation

- It is convenient at times to write a relational algebra expression by assigning parts of it to temporary relation variables.
- The assignment operation is denoted by $\leftarrow$ and works like an assignment in a programming language.
- Example: Find all instructors in the "Physics" and Music departments.

$$
\begin{aligned}
& \text { Physics } \leftarrow \sigma_{\text {dept_name= "Physics" }} \text { (instructor) } \\
& \text { Music } \leftarrow \sigma_{\text {dept_name }=\text { "Music" }} \text { (instructor) } \\
& \text { Physics } \cup \text { Music }
\end{aligned}
$$

- With the assignment operation, a query can be written as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.


## The Rename Operation

- The results of relational algebra expressions do not have a name that we can use to refer to them. The rename operator, $\rho$, is provided for that purpose
- The expression:

$$
\rho_{x}(E)
$$

returns the result of expression $E$ under the name $x$

- Another form of the rename operation:

$$
\rho_{x(A 1, A 2, . . A n)}(E)
$$

## Equivalent Queries

- There is more than one way to write a query in relational algebra.
- Example: Find information about courses taught by instructors in the Physics department with salaries greater than 90,000
- Query 1

$$
\sigma_{\text {dept_name }=\text { "Physics } " \wedge} \text { salary }>\text { 90,000 } \text { (instructor) }
$$

- Query 2

$$
\sigma_{\text {dept_name }} \text { "Physics" }\left(\sigma_{\text {salary }}>90.000(\text { instructor })\right)
$$

- The two queries are not identical; they are, however, equivalent -- they give the same result on any database.


## Equivalent Queries

- There is more than one way to write a query in relational algebra.
- Example: Find information about courses taught by instructors in the Physics department
- Query 1
$\sigma_{\text {dept_name= "Physics" }}$ (instructor $\bowtie_{\text {instructor.ID }=\text { teaches.ID }}$ teaches)
- Query 2
$\left(\sigma_{\text {dept_name }}=\right.$ "Physics" $($ instructor $\left.)\right) \bowtie_{\text {instructor.ID }}=$ teaches.ID teaches
- The two queries are not identical; they are, however, equivalent -- they give the same result on any database.


## End of Chapter 2

