
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 5 : Intermediate SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 7th Edition

Outline

▪ Join Expressions

▪ Views

▪ Transactions

▪ Integrity Constraints

▪ SQL Data Types and Schemas

▪ Index Definition in SQL

▪ Authorization

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 7th Edition

Joined Relations

▪ Join operations take two relations and return as a result another

relation.

▪ A join operation is a Cartesian product that requires that tuples in the two

relations match (under a specific condition). It also specifies attributes to

be present in the result of the join

▪ The join operations are typically used as subquery expressions in the

from clause

▪ Three types of joins:

• Natural join

• Inner join

• Outer join

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 7th Edition

Natural Join in SQL

▪ Natural join matches tuples with the same values for all common attributes

and retains only one copy of each of the common columns.

▪ List the names of instructors along with the course ID of the courses that

they taught

• select name, course_id

from students, takes

where student.ID = takes.ID;

▪ Same query in SQL with “natural join” construct

• select name, course_id

from student natural join takes;

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 7th Edition

Natural Join in SQL (Cont.)

▪ The from clause can have multiple relations combined using natural join:

select A1, A2, … An

from r1 natural join r2 natural join .. natural join rn

where P ;

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 7th Edition

Student Relation

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 7th Edition

Takes Relation

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 7th Edition

student natural join takes

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 7th Edition

Dangerous in Natural Join

▪ Beware of unrelated attributes with the same name get equated incorrectly

▪ Example -- List the names of students along with the titles of courses that

they have taken

• Correct version

select name, title

from student natural join takes, course

where takes.course_id = course.course_id;

• Incorrect version

select name, title

from student natural join takes natural join course;

▪ This query omits all (student name, course title) pairs where the

student takes a course in a department other than the student's

own department.

▪ The correct version (above), correctly outputs such pairs.

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 7th Edition

Outer Join

▪ An extension of the join operation that avoids loss of information.

▪ Computes the join and then adds tuples from one relation that does not

match tuples in the other relation to the result of the join.

▪ Uses null values.

▪ Three forms of outer join:

• left outer join

• right outer join

• full outer join

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 7th Edition

Outer Join Examples

▪ Relation course

▪ Relation prereq

▪ Observe that

course information is missing CS-347

prereq information is missing CS-315

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 7th Edition

Left Outer Join

▪ course natural left outer join prereq

▪ In relational algebra: course ⟕ prereq

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 7th Edition

Right Outer Join

▪ course natural right outer join prereq

▪ In relational algebra: course ⟖ prereq

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 7th Edition

Full Outer Join

▪ course natural full outer join prereq

▪ In relational algebra: course ⟗ prereq

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 7th Edition

Joined Types and Conditions

▪ Join operations take two relations and return as a result another

relation.

▪ These additional operations are typically used as subquery expressions

in the from clause

▪ Join condition – defines which tuples in the two relations match.

▪ Join type – defines how tuples in each relation that do not match any

tuple in the other relation (based on the join condition) are treated.

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 7th Edition

Joined Relations – Examples

▪ course natural right outer join prereq

▪ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 7th Edition

Joined Relations – Examples

▪ course inner join prereq on

course.course_id = prereq.course_id

▪ What is the difference between the above, and a natural join?

▪ course left outer join prereq on

course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 7th Edition

Joined Relations – Examples

▪ course natural right outer join prereq

▪ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 7th Edition

Views

▪ In some cases, it is not desirable for all users to see the entire logical

model (that is, all and complete actual relations stored in the database.)

▪ Consider a person who needs to know an instructor’s name and

department, but not the salary. This person should see a relation,

described in SQL, as:

select ID, name, dept_name

from instructor

▪ A view provides a mechanism to hide certain data from the view of

certain users.

▪ Any relation that is not of the conceptual model but is made visible to a

user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 7th Edition

View Definition

▪ A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name

is represented by v.

▪ Once a view is defined, the view name can be used to refer to the virtual

relation that the view generates.

▪ View definition is not the same as creating a new relation by evaluating

the query expression

• Rather, a view definition causes the saving of an expression; the

expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 7th Edition

View Definition and Use

▪ A view of instructors without their salar

create view faculty as

select ID, name, dept_name

from instructor

▪ Find all instructors in the Biology department

select name

from faculty

where dept_name = 'Biology'

▪ Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 7th Edition

Views Defined Using Other Views

▪ create view physics_fall_2017 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017’;

▪ create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson';

©Silberschatz, Korth and Sudarshan5.25Database System Concepts - 7th Edition

View Expansion

▪ Expand the view :

create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson'

▪ To:

create view physics_fall_2017_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017')

where building= 'Watson';

©Silberschatz, Korth and Sudarshan5.26Database System Concepts - 7th Edition

Materialized Views

▪ Certain database systems allow view relations to be physically stored.

• Physical copy created when the view is defined.

• Such views are called Materialized views:

▪ If relations used in the query are updated, the materialized view result

becomes out of date

• Need to maintain the view, by updating the view whenever the

underlying relations are updated.

©Silberschatz, Korth and Sudarshan5.27Database System Concepts - 7th Edition

Update of a View

▪ Add a new tuple to faculty view which we defined earlier

insert into faculty

values ('30765', 'Green', 'Music');

▪ This insertion must be represented by the insertion into the instructor

relation

• Must have a value for salary.

▪ Two approaches

• Reject the insert

• Insert the tuple

('30765', 'Green', 'Music', null)

into the instructor relation

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

▪ create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name = department.dept_name;

▪ insert into instructor_info

values ('69987', 'White', 'Taylor');

▪ Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan5.29Database System Concepts - 7th Edition

And Some Not at All

▪ create view history_instructors as

select *

from instructor

where dept_name= 'History';

▪ What happens if we insert

('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 7th Edition

View Updates in SQL

▪ Most SQL implementations allow updates only on simple views

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation and

does not have any expressions, aggregates, or distinct

specifications.

• Any attribute not listed in the select clause can be set to null

• The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 7th Edition

Transactions

▪ A transaction consists of a sequence of query and/or update

statements and is a “unit” of work

▪ The SQL standard specifies that a transaction begins implicitly when an

SQL statement is executed.

▪ The transaction must end with one of the following statements:

• Commit work. The updates performed by the transaction become

permanent in the database.

• Rollback work. All the updates performed by the SQL statements in

the transaction are undone.

▪ Atomic transaction

• either fully executed or rolled back as if it never occurred

▪ Isolation from concurrent transactions

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 7th Edition

Integrity Constraints

▪ Integrity constraints guard against accidental damage to the database,

by ensuring that authorized changes to the database do not result in a

loss of data consistency.

• A checking account must have a balance greater than $10,000.00

• A salary of a bank employee must be at least $10.00 an hour

• A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 7th Edition

Constraints on a Single Relation

▪ not null

▪ primary key

▪ unique

▪ check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 7th Edition

Not Null Constraints

▪ not null

• Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 7th Edition

Unique Constraints

▪ unique (A1, A2, …, Am)

• The unique specification states that the attributes A1, A2, …, Am

form a candidate key.

• Candidate keys are permitted to be null (in contrast to primary

keys).

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 7th Edition

The check clause

▪ The check (P) clause specifies a predicate P that must be satisfied by

every tuple in specific relation.

▪ Example: ensure that a semester is one of Fall, Winter, Spring, or

Summer

create table section

(course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 7th Edition

Referential Integrity

▪ Ensures that a value that appears in one relation for a given set of

attributes also appears for a certain set of attributes in another relation.

• Example: If “Biology” is a department name appearing in one of the

tuples of the instructor relation, then there exists a tuple in the

department relation for “Biology”.

▪ Let A be a set of attributes. Let R and S be two relations that contain

attributes A and where A is the primary key of S. A is said to be a

foreign key of R if for any values of A appearing in R these values also

appear in S.

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 7th Edition

Referential Integrity (Cont.)

▪ Foreign keys can be specified as part of the SQL create table

statement

foreign key (dept_name) references department

▪ By default, a foreign key references the primary-key attributes of the

referenced table.

▪ SQL allows a list of attributes of the referenced relation to be specified

explicitly.

foreign key (dept_name) references department (dept_name)

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 7th Edition

Cascading Actions in Referential Integrity

▪ When a referential-integrity constraint is violated, the normal procedure is to

reject the action that caused the violation.

▪ An alternative, in case of deletion or update is to cascade

create table course (

(…

dept_name varchar(20),

foreign key (dept_name) references department

on delete cascade

on update cascade,

. . .)

▪ Instead of cascade we can use :

• set null,

• set default

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 7th Edition

Complex Check Conditions

▪ The predicate in the check clause can be an arbitrary predicate that can

include a subquery.

check (time_slot_id in (select time_slot_id from time_slot))

The check condition states that the time_slot_id in each tuple in the

section relation is actually the identifier of a time slot in the time_slot

relation.

• The condition has to be checked not only when a tuple is inserted or

modified in section , but also when the relation time_slot changes

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 7th Edition

Assertions

▪ An assertion is a predicate expressing a condition that we wish the

database always to satisfy.

▪ The following constraints, can be expressed using assertions:

▪ For each tuple in the student relation, the value of the attribute tot_cred

must equal the sum of credits of courses that the student has completed

successfully.

▪ An instructor cannot teach in two different classrooms in a semester in the

same time slot

▪ An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 7th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 7th Edition

Triggers

▪ A trigger is a statement that is executed automatically by the system as a

side effect of a modification to the database.

▪ To design a trigger mechanism, we must specify:

• the conditions under which the trigger is to be executed.

• the actions to be taken when the trigger executes.

▪ Triggers introduced to SQL standard in SQL 1999, but supported even

earlier using non-standard syntax by most databases.

• Syntax illustrated here may not work exactly on your database

system; check the system manuals

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

▪ create trigger credits_earned after update of takes on (grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)

begin atomic

update student

set tot_cred= tot_cred +

(select credits

from course

where course.course_id= nrow.course_id)

where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 7th Edition

Statement Level Triggers

▪ Instead of executing a separate action for each affected row, a single

action can be executed for all rows affected by a transaction

• Use for each statement instead of for each row

• Use referencing old table or referencing new table to refer to

temporary tables (called transition tables) containing the affected

rows

• Can be more efficient when dealing with SQL statements that update

a large number of rows

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 7th Edition

Large-Object Types

▪ Large objects (photos, videos, CAD files, etc.) are stored as a large

object:

• blob: binary large object – the object is a large collection of

uninterpreted binary data (whose interpretation is left to an application

outside of the database system)

• clob: character large object – the object is a large collection of

character data

▪ When a query returns a large object, a pointer is returned rather than the

large object itself.

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 7th Edition

User-Defined Types

▪ create type construct in SQL creates a user-defined type

create type Dollars as numeric (12,2) final

▪ Example:

create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 7th Edition

Domains

▪ create domain construct in SQL-92 creates user-defined domain

types

create domain person_name char(20) not null

▪ Types and domains are similar. Domains can have constraints,

such as not null, specified on them.

▪ Example:

create domain degree_level varchar(10)

constraint degree_level_test

check (value in ('Bachelors', 'Masters', 'Doctorate'));

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 7th Edition

Index Creation

▪ Many queries reference only a small proportion of tuples in a table.

▪ It is inefficient for the system to read every tuple to find a tuple with a

particular value

▪ An index on an attribute of a relation is a data structure that allows the

database system to find those tuples in the relation that have a specified

value for that attribute efficiently, without scanning through all the tuples of

the relation.

▪ We create an index with the create index command

create index <name> on <relation-name> (attribute);

©Silberschatz, Korth and Sudarshan5.51Database System Concepts - 7th Edition

Index Creation Example

▪ create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

▪ create index studentID_index on student(ID)

▪ The query:

select *

from student

where ID = '12345'

can be executed by using the index to find the required tuple, without

looking at all tuples of student

©Silberschatz, Korth and Sudarshan5.52Database System Concepts - 7th Edition

Authorization

▪ We may assign a user several forms of authorization on parts of the

database.

• Read - allows reading, but not modification of data.

• Insert - allows insertion of new data, but not modification of existing

data.

• Update - allows modification, but not deletion of data.

• Delete - allows deletion of data.

▪ Each of these types of authorizations is called a privilege. We may

authorize the user all, none, or a combination of these types of privileges

on specified parts of a database, such as a relation or a view.

©Silberschatz, Korth and Sudarshan5.53Database System Concepts - 7th Edition

Authorization (Cont.)

▪ Forms of authorization to modify the database schema:

• Index - allows creation and deletion of indices.

• Resources - allows creation of new relations.

• Alteration - allows addition or deletion of attributes in a relation.

• Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan5.54Database System Concepts - 7th Edition

Authorization Specification in SQL

▪ The grant statement is used to confer authorization

grant <privilege list> on <relation or view > to <user list>

▪ <user list> is:

• a user-id

• public, which allows all valid users the privilege granted

▪ Example:

• grant select on department to Amit, Satoshi

▪ Granting a privilege on a view does not imply granting any privileges on

the underlying relations.

▪ The grantor of the privilege must already hold the privilege on the

specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan5.55Database System Concepts - 7th Edition

Privileges in SQL

▪ select: allows read access to relation, or the ability to query using the

view

• Example: grant users U1, U2, and U3 select authorization on the

instructor relation:

grant select on instructor to U1, U2, U3

▪ insert: the ability to insert tuples

▪ update: the ability to update using the SQL update statement

▪ delete: the ability to delete tuples.

▪ all privileges: used as a short form for all the allowable privileges

©Silberschatz, Korth and Sudarshan5.56Database System Concepts - 7th Edition

Revoking Authorization in SQL

▪ The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user list>

▪ Example:

revoke select on student from U1, U2, U3

▪ <privilege-list> may be all to revoke all privileges.

▪ If <user-list> includes public, all users lose the privilege except those

granted it explicitly.

▪ If the same privilege was granted twice to the same user by different

grantees, the user may retain the privilege after the revocation.

▪ All privileges that depend on the privilege being revoked are also

revoked.

©Silberschatz, Korth and Sudarshan5.57Database System Concepts - 7th Edition

End of Chapter 5

	Snímek 1: Chapter 5 : Intermediate SQL
	Snímek 2: Outline
	Snímek 3: Joined Relations
	Snímek 4: Natural Join in SQL
	Snímek 5: Natural Join in SQL (Cont.)
	Snímek 6: Student Relation
	Snímek 7: Takes Relation
	Snímek 8: student natural join takes
	Snímek 9: Dangerous in Natural Join
	Snímek 12: Outer Join
	Snímek 13: Outer Join Examples
	Snímek 14: Left Outer Join
	Snímek 15: Right Outer Join
	Snímek 16: Full Outer Join
	Snímek 17: Joined Types and Conditions
	Snímek 18: Joined Relations – Examples
	Snímek 19: Joined Relations – Examples
	Snímek 20: Joined Relations – Examples
	Snímek 21: Views
	Snímek 22: View Definition
	Snímek 23: View Definition and Use
	Snímek 24: Views Defined Using Other Views
	Snímek 25: View Expansion
	Snímek 26: Materialized Views
	Snímek 27: Update of a View
	Snímek 28: Some Updates Cannot be Translated Uniquely
	Snímek 29: And Some Not at All
	Snímek 30: View Updates in SQL
	Snímek 31: Transactions
	Snímek 32: Integrity Constraints
	Snímek 33: Constraints on a Single Relation
	Snímek 34: Not Null Constraints
	Snímek 35: Unique Constraints
	Snímek 36: The check clause
	Snímek 37: Referential Integrity
	Snímek 38: Referential Integrity (Cont.)
	Snímek 39: Cascading Actions in Referential Integrity
	Snímek 40: Complex Check Conditions
	Snímek 41: Assertions
	Snímek 42
	Snímek 43: Triggers
	Snímek 45: Trigger to Maintain credits_earned value
	Snímek 46: Statement Level Triggers
	Snímek 47: Large-Object Types
	Snímek 48: User-Defined Types
	Snímek 49: Domains
	Snímek 50: Index Creation
	Snímek 51: Index Creation Example
	Snímek 52: Authorization
	Snímek 53: Authorization (Cont.)
	Snímek 54: Authorization Specification in SQL
	Snímek 55: Privileges in SQL
	Snímek 56: Revoking Authorization in SQL
	Snímek 57: End of Chapter 5

