
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 7:  Normalization

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 7th Edition

Outline

▪ Features of Good Relational Design

▪ Functional Dependencies

▪ Decomposition Using Functional Dependencies

▪ Normal Forms

▪ Functional Dependency Theory

▪ Algorithms for Decomposition using Functional Dependencies



©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 7th Edition

Features of Good Relational Designs

▪ Suppose we combine instructor and department into in_dep, which 

represents the natural join of the relations instructor and department

▪ There is a repetition of information

▪ Need to use null values (if we add a new department with no instructors) 
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Decomposition

▪ The only way to avoid the repetition-of-information problem in the in_dep

schema is to decompose it into two schemas – instructor and department 

schemas.

▪ Not all decompositions are good.  Suppose we decompose

employee(ID, name, street, city, salary)

into

employee1 (ID, name)

employee2 (name, street, city, salary)

The problem arises when we have two employees with the same name

▪ The next slide shows how we lose information -- we cannot reconstruct 

the original employee relation -- and so, this is a lossy decomposition.
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A Lossy Decomposition
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Lossless Decomposition

▪ Let R be a relation schema and let R1 and R2 form a decomposition of R. 

That is R = R1 U R2

▪ We say that the decomposition is a lossless decomposition  if there is 

no loss of information by replacing  R with the two relation schemas R1 

U R2

▪ Formally:

 R1
(r)      R2

(r) = r

▪ Conversely, a decomposition is lossy if:

r   R1
(r)      R2

(r)
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Example of Lossless Decomposition 

▪ Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)
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Normalization Theory

▪ Decide whether a particular relation R is in “good” form.

▪ In the case that a relation R is not in “good” form, decompose it into  set 

of relations {R1, R2, ..., Rn} such that 

• Each relation is in good form 

• The decomposition is the lossless decomposition

▪ Our theory is based on:

• Functional dependencies
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Functional Dependencies

▪ There are usually a variety of constraints (rules) valid on the data in the 

real world.

▪ For example, some of the constraints that are expected to hold  in a 

university database are:

• Students and instructors are uniquely identified by their ID.

• Each student and instructor has only one name.

• Each instructor and student is (primarily) associated with only one 

department.

• Each department has only one value for its budget, and only one 

associated building.
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Functional Dependencies (Cont.)

▪ An instance of a relation that satisfies all such real-world constraints is a  

legal instance of the relation;

▪ A legal instance of a database requires all the relation instances to be 

legal instances

▪ Constraints on the set of legal relations require that the value for a certain 

set of attributes determines uniquely the value for another set of 

attributes.

▪ A functional dependency is a generalization of the notion of a key.
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Functional Dependencies Definition 

▪ Let R be a relation schema

  R  and    R

▪ The functional dependency

 → 

holds on R if and only if for any legal relations r(R), whenever any two 
tuples t1 and t2 of r agree on the attributes , they also agree on the 
attributes . That is, 

t1[] = t2 []    t1[ ]  = t2 [ ] 

▪ Example:  Consider r(A,B ) with the following instance of r.

▪ On this instance, B → A hold;  A → B does NOT hold, 

1 4

1     5

3     7
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Closure of a Set of Functional Dependencies

▪ Given a set F of functional dependencies, there are certain other 

functional dependencies that are logically implied by F.

• If  A → B and  B → C,  then we can infer that A → C

• etc.

▪ The set of all functional dependencies logically implied by F is the 

closure of F.

▪ We denote the closure of F by F+.
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Keys and Functional Dependencies

▪ K is a superkey for relation schema R if and only if K → R

▪ K is a candidate key for R if and only if 

• K → R, and

• for no   K,  → R

▪ Functional dependencies allow us to express constraints that cannot be 

expressed using superkeys.  Consider the schema:

in_dep (ID, name, salary, dept_name, building, budget ).

We expect the following functional dependencies to hold:

dept_name→ building

ID → building

but would not expect the following to hold: 

dept_name → salary
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Use of Functional Dependencies

▪ We use functional dependencies to:

• To test relations to see if they are legal under a given set of 

functional dependencies. 

▪ If a relation r is legal under a set F of functional dependencies, 

we say that r satisfies F.

• To specify constraints on the set of legal relations

▪ We say that F holds on R if all legal relations on R satisfy the set 

of functional dependencies F.

▪ Note:  A specific instance of a relation may satisfy a functional 

dependency even if the functional dependency does not hold on all legal 

instances.  

• For example, a specific instance of instructor may, by chance, satisfy 

name → ID.
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Trivial Functional Dependencies

▪ A functional dependency is trivial if it is satisfied by all instances of a 

relation

▪ Example:

• ID, name → ID

• name → name

▪ In general,  →  is trivial if   
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Lossless Decomposition

▪ We can use functional dependencies to show when certain 

decompositions are lossless.  

▪ For the case of R = (R1, R2), we require that for all possible relations r on 

schema R

r = R1 (r )    R2 (r ) 

▪ A decomposition of R into R1 and R2 is lossless decomposition  if at least 

one of the following dependencies is in F+:

• R1  R2 → R1

• R1  R2 → R2

▪ The above functional dependencies are a sufficient condition for lossless 

join decomposition; the dependencies are a necessary condition only if all 

constraints are functional dependencies
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Example

▪ R = (A, B, C)

F = {A → B, B → C)

▪ R1 = (A, B),   R2 = (B, C)

• Lossless decomposition:

R1   R2 = {B} and B → BC

▪ R1 = (A, B),   R2 = (A, C)

• Lossless decomposition:

R1   R2 = {A} and A → AB

▪ Note:

• B → BC 

is a shorthand notation for 

• B → {B, C}
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Dependency Preservation

▪ Testing functional dependency constraints each time the database is 

updated can be costly

▪ It is useful to design the database in a way that constraints can be 

tested efficiently.  

▪ If testing a functional dependency can be done by considering just one 

relation, then the cost of testing this constraint is low

▪ When decomposing a relation, it may no longer be possible testing the 

dependence without performing a Cartesian Product (Join)

▪ A decomposition that makes it computationally hard to enforce 

functional dependency is said to be NOT dependency preserving.
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Dependency Preservation Example

▪ Consider a schema:

dept_advisor(s_ID, i_ID, dept_name)

▪ With function dependencies:

i_ID → dept_name

s_ID, dept_name → i_ID

▪ In the above design we are forced to repeat the department name once 

for each time an instructor participates in a dept_advisor relationship.  

▪ To fix this, we need to decompose dept_advisor

▪ Any decomposition will not include all the attributes in

s_ID, dept_name → i_ID

▪ Thus, any decomposition is NOT dependency preserving 
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Boyce-Codd Normal Form

▪ A relation schema R is in BCNF with respect to a set F of functional  
dependencies if for all functional dependencies in F+ of the form 

 → 

where   R and   R, at least one of the following holds:

•  →  is trivial (i.e.,   )

•  is a superkey for R
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Boyce-Codd Normal Form (Cont.)

▪ Example schema  that is not in BCNF:

in_dep (ID, name, salary, dept_name, building, budget )

because :

• dept_name→ building, budget  

▪ holds on in_dep

▪ but 

• dept_name is not a superkey

▪ When decompose  in_dept into instructor and department 

• instructor is in BCNF

• department is in BCNF
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Decomposing a Schema into BCNF

▪ Let  R be a schema that is not in BCNF.  Let  → be the FD that 
causes a violation of BCNF.

▪ We decompose R into:

• ( U  )

• ( R - (  -  ) )

▪ In our example of in_dep, 

•  = dept_name

•  = building, budget

and in_dep is replaced by

• ( U  ) = ( dept_name, building, budget )

• ( R - (  -  ) ) = ( ID, name, dept_name, salary )
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Example

▪ R = (A, B, C)

F = {A → B, B → C)

▪ R1 = (A, B),   R2 = (B, C)

• Lossless-join decomposition:

R1   R2 = {B} and B → BC

• Dependency preserving

▪ R1 = (A, B),   R2 = (A, C)

• Lossless-join decomposition:

R1   R2 = {A} and A → AB

• Not dependency preserving 

(cannot check B → C without computing R1 R2)
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BCNF and Dependency Preservation

▪ It is not always possible to achieve both BCNF and dependency 

preservation 

▪ Consider a schema:

dept_advisor(s_ID, i_ID, department_name)

▪ With function dependencies:

i_ID → dept_name

s_ID, dept_name → i_ID

▪ dept_advisor is not in BCNF 

• i_ID is not a superkey.

▪ Any decomposition  of dept_advisor will not include all the attributes in

s_ID, dept_name → i_ID

▪ Thus, the composition is NOT dependency preserving
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Third Normal Form

▪ A relation schema R is in the third normal form (3NF) if for all:

 →  in F+

at least one of the following holds:

•  →  is trivial (i.e.,   )

•  is a superkey for R

• Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

▪ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two 

conditions above must hold).

▪ Third condition is the minimal relaxation of BCNF to ensure dependency 

preservation.
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3NF Example

▪ Consider a schema:

dept_advisor(s_ID, i_ID, dept_name)

▪ With function dependencies:

i_ID → dept_name

s_ID, dept_name → i_ID

▪ Two candidate keys =  {s_ID, dept_name}, {s_ID, i_ID }

▪ We have seen before that dept_advisor is not in BCNF

▪ R,  however, is in  3NF

• s_ID, dept_name is a superkey

• i_ID → dept_name and i_ID is NOT a superkey, but:

▪ { dept_name} – {i_ID }  = {dept_name } and

▪ dept_name is contained in a  candidate key
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Redundancy in 3NF

▪ Consider  the schema R below,  which is in 3NF

▪ What is wrong with the table?

• R = (J, K, L )

• F = {JK → L, L → K }

• And an instance table:

• Repetition of information

• Need to use null values (e.g., to represent the relationship l2, k2

where there is no corresponding value for J)
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Comparison of BCNF and 3NF

▪ Advantages of 3NF over BCNF.  It is always possible to obtain a 3NF 

design without sacrificing losslessness or dependency preservation. 

▪ Disadvantages to 3NF. 

• We may have to use null values to represent some of the possible 

meaningful relationships among data items.

• There is the problem of repetition of information.
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Goals of Normalization

▪ Let R be a relation scheme with a set F of functional dependencies.

▪ Decide whether a relation scheme R is in “good” form.

▪ In the case that a relation scheme R is not in “good” form, decompose 

R into a set of relation schemes  {R1, R2, ..., Rn} such that:

• Each relation scheme is in good form 

• The decomposition is a lossless decomposition

• Preferably, the decomposition should be dependency preserving.
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How good is BCNF?

▪ There are database schemas in BCNF that do not seem to be 

sufficiently normalized 

▪ Consider a relation 

inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and can have 

multiple children

• Instance of inst_info
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▪ There are no non-trivial functional dependencies and therefore the 

relation is in BCNF 

▪ Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we 

need to add two tuples

(99999, David,   981-992-3443)

(99999, William, 981-992-3443)

How good is BCNF? (Cont.)
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▪ It is better to decompose inst_info into:

• inst_child:

• inst_phone:

▪ This suggests the need for higher normal forms, such as Fourth 

Normal Form (4NF).

Higher Normal Forms 
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Functional-Dependency Theory Roadmap

▪ We now consider a formal theory that tells us which functional 

dependencies are implied logically by a given set of functional 

dependencies.

▪ We then develop algorithms to generate lossless decompositions into 

BCNF and 3NF

▪ We then develop algorithms to test if a decomposition is dependency-

preserving
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Closure of a Set of Functional Dependencies

▪ Given a set F set of functional dependencies, there are certain other 

functional dependencies that are logically implied by F.

• If  A → B and  B → C,  then we can infer that A → C

• etc.

▪ The set of all functional dependencies logically implied by F is the closure

of F.

▪ We denote the closure of F by F+.



©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

▪ We can compute F+, the closure of F, by repeatedly applying Armstrong’s 

Axioms:

• Reflexive rule: if   , then  → 

• Augmentation  rule: if  → , then   →  

• Transitivity rule:  if  → , and  → , then  → 

▪ These rules are 

• Sound -- generate only functional dependencies that actually hold,  

and 

• Complete -- generate all functional dependencies that hold.
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Example of F+

▪ R = (A, B, C, G, H, I)

F = { A → B

A → C

CG → H

CG → I

B → H}

▪ Some members of F+

• A → H        

▪ by transitivity from A → B and B → H

• AG → I       

▪ by augmenting A → C with G, to get AG → CG 

and then transitivity with CG → I 

• CG → HI     

▪ by augmenting CG → I to infer CG → CGI, 

and augmenting CG → H to infer CGI → HI, 

and then transitivity
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Closure of Functional Dependencies (Cont.)

▪ Additional rules:

• Union rule: If  →  holds and  →  holds,  then  →   holds.

• Decomposition rule: If  →   holds, then  →  holds and  →

 holds.

• Pseudotransitivity rule:If  →  holds and   →  holds, then 

 →  holds.

▪ The above rules can be inferred from Armstrong’s axioms.



©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 7th Edition

Procedure for Computing F+

▪ To compute the closure of a set of functional dependencies F:

F + = F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F +

for each pair of functional dependencies f1 and f2 in F +

if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +

until F + does not change any further

▪ NOTE:  We shall see an alternative procedure for this task later
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Closure of Attribute Sets

▪ Given a set of attributes , define the closure of  under F (denoted by 

+) as the set of attributes that are functionally determined by  under F

▪ Algorithm to compute +, the closure of  under F

result := ;

while (changes to result) do

for each  →  in F do

begin

if   result then result := result  

end
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Example of Attribute Set Closure

▪ R = (A, B, C, G, H, I)

▪ F = {A → B
A → C 
CG → H
CG → I
B → H}

▪ (AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG  AGBC)

4. result = ABCGHI (CG → I and CG  AGBCH)

▪ Is AG a candidate key?  

1. Is AG a super key?

1. Does AG → R? == Is R  (AG)+ 

2. Is any subset of AG a superkey?

1. Does A → R? == Is R  (A)+   

2. Does G → R? == Is R  (G)+ 

3. In general: check for each subset of size n-1
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Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

▪ Testing for superkey:

• To test if  is a superkey, we compute +, and check if + contains all 

attributes of R.

▪ Testing functional dependencies

• To check if a functional dependency  →  holds (or, in other words, 

is in F+), just check if   +. 

• That is, we compute + by using attribute closure, and then check if it 

contains . 

• Is a simple and cheap test, and very useful

▪ Computing closure of F

• For each   R, we find the closure +, and for each S  +, we output 

a functional dependency  → S.
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Canonical Cover

▪ Suppose that we have a set of functional dependencies F on a relation 

schema. Whenever a user performs an update on the relation, the 

database system must ensure that the update does not violate any 

functional dependencies; that is, all the functional dependencies in F are 

satisfied in the new database state.

▪ If an update violates any functional dependencies in set F, the system 

must roll back the update.

▪ We can reduce the effort spent in checking for violations by testing a 

simplified set of functional dependencies that has the same closure as the 

given set. 

▪ This simplified set is termed the canonical cover

▪ To define canonical cover we must first define extraneous attributes.

• An attribute of a functional dependency  in F is extraneous if we can 

remove it without changing F +
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Extraneous Attributes

▪ Removing an attribute from the left side of a functional dependency could 

make it a stronger constraint.  

• For example, if we have AB → C and remove B, we get the possibly 

stronger result A → C.  It may be stronger because A → C logically 

implies AB → C, but  AB → C does not, on its own, logically imply     

A → C

▪ But, depending on what our set F of functional dependencies happens to 

be, we may be able to remove B from AB → C safely.  

• For example, suppose that

• F =  {AB → C, A → D, D → C}

• Then we can show that F logically implies A → C, making B 

extraneous in AB → C.
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Extraneous Attributes

▪ An attribute of a functional dependency  in F is extraneous if we can 

remove it without changing F +

▪ Consider a set F of functional dependencies and the functional 

dependency  →  in F.

• Remove from the left side: Attribute A is extraneous in  if

▪ A   and 

▪ F logically implies (F – { → })  {( – A) → }.

• Remove from the right side: Attribute A is extraneous in  if

▪ A   and 

▪ The set of functional dependencies    

(F – { → })  { →( – A)} logically implies F.

▪ Note: implication in the opposite direction is trivial in each of the cases 

above since a “stronger” functional dependency always implies a weaker 

one
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Testing if an Attribute is Extraneous

▪ Let R be a relation schema and let  F be a set of functional 

dependencies that hold on R . Consider an attribute in the functional 

dependency  → .

▪ To test if attribute A   is extraneous in 

• Consider the set:

F' = (F – { → })  { →( – A)}, 

• check that + contains A; if it does, A is extraneous in 

▪ To test if attribute A   is extraneous in 

• Let  =  – {A}. Check if  →  can be inferred from F. 

▪ Compute + using the dependencies in F

▪ If +  includes all attributes in  then, A is extraneous in 
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Examples of Extraneous Attributes

▪ Let F = {AB → CD, A → E, E → C }

▪ To check if C is extraneous in AB → CD, we:

• Compute the attribute closure of AB under F' = {AB → D, A → E, E →

C}

• The closure is ABCDE, which includes CD

• This implies that C is extraneous
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Canonical Cover

▪ F logically implies all dependencies in Fc, and 

▪ Fc logically implies all dependencies in F, and

▪ No functional dependency in Fc contains an extraneous attribute, and

▪ Each left side of functional dependency in Fc is unique. That is, there 
are no two dependencies in Fc

• 1 → 1 and 2 → 2 such that 

• 1 = 2

A canonical cover for F is a set of dependencies Fc such that 



©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 7th Edition

Canonical Cover

▪ To compute a canonical cover for F:

repeat

Use the union rule to replace any dependencies in F of the form

1 → 1 and 1 → 2 with 1 → 1 2

Find a functional dependency  →  in Fc with an extraneous  
attribute either in  or in 

/* Note: test for extraneous attributes done using Fc, not F+

If an extraneous attribute is found, delete it from  → 

until  Fc not change

▪ Note: Union rule may become applicable after some extraneous attributes 
have been deleted, so it must be re-applied
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Example: Computing a Canonical Cover

▪ R = (A, B, C)

F = {A → BC

B → C

A → B

AB → C}

▪ Combine A → BC and A → B into A → BC

• Set is now {A → BC, B → C, AB → C}

▪ A is extraneous in AB → C

• Check if the result of deleting A from  AB → C  is implied by the other 

dependencies

▪ Yes: in fact,  B → C is already present!

• Set is now {A → BC, B → C}

▪ C is extraneous in A → BC

• Check if A → C is logically implied by A → B and the other dependencies

▪ Yes: using transitivity on A → B  and B → C. 

• Can use attribute closure of A in more complex cases

▪ The canonical cover is: A → B

B → C
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Dependency Preservation

▪ Let Fi be a subset of dependencies F + that include only attributes in Ri. 

• A  decomposition is dependency preserving,  if

(F1  F2  …  Fn )+ = F +

▪ Using the above definition,  testing for dependency preservation takes 

exponential time.

▪ Note that if decomposition is NOT dependency preserving then checking 

updates for violation of functional dependencies may require computing 

joins, which is expensive.
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Dependency Preservation (Cont.)

▪ Let F be the set of dependencies on schema R and let R1, R2, .., Rn be a 

decomposition of R.

▪ The restriction of  F to Ri is the set Fi of all functional dependencies in F + 

that include only attributes of Ri .

▪ Since all functional dependencies in a restriction involve attributes of only 

one relation schema, it is possible to test such a dependency for 

satisfaction by checking only one relation.

▪ Note that the definition of restriction uses all dependencies in F +, not just 

those in F.

▪ The set of restrictions F1, F2, .. , Fn is the set of functional dependencies 

that can be checked efficiently.
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Testing for Dependency Preservation

▪ To check if a dependency  →  is preserved in a decomposition of R into 

R1, R2, …, Rn , we apply the following test (with attribute closure done with 

respect to F)

• result = 

repeat

for each Ri in the decomposition

t = (result  Ri)
+  Ri

result  =  result   t

until (result does not change)

• If the result contains all attributes in , then the functional dependency  

 →  is preserved.

▪ We apply the test on all dependencies in F to check if a decomposition is a 

dependency preserving

▪ This procedure takes polynomial time, instead of the exponential time 

required to compute F+ and (F1  F2  …  Fn)
+
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Design Goals - Summary

▪ Goal for a relational database design is:

• BCNF.

• Lossless join.

• Dependency preservation.

▪ If we cannot achieve this, we accept one of

• Lack of dependency preservation 

• Redundancy due to the use of 3NF

▪ Interestingly, SQL does not provide a direct way of specifying functional 

dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test, (and 

currently not supported by any of the widely used databases!)

▪ Even if we had a dependency preserving decomposition, using SQL we 

would not be able to efficiently test a functional dependency whose left-

hand side is not a key.



©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 7th Edition

End of  Chapter  7
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