
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 8: Physical Storage and Data

Structures

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan8.2Database System Concepts - 7th Edition

Classification of Physical Storage Media

▪ Can differentiate storage into:

• volatile storage: loses contents when power is switched off

• non-volatile storage:

▪ Contents persist even when power is switched off.

▪ Includes secondary and tertiary storage, as well as battery-

backed-up main memory.

▪ Factors affecting the choice of storage media include

• Speed with which data can be accessed

• Cost per unit of data

• Reliability

©Silberschatz, Korth and Sudarshan8.3Database System Concepts - 7th Edition

Storage Hierarchy

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 7th Edition

Storage Hierarchy (Cont.)

▪ primary storage: Fastest media but volatile (cache, main memory).

▪ secondary storage: next level in hierarchy, non-volatile, moderately fast

access time

• Also called on-line storage

• E.g., flash memory, magnetic disks

▪ tertiary storage: lowest level in hierarchy, non-volatile, slow access time

• also called off-line storage and used for archival storage

• e.g., magnetic tape, optical storage

• Magnetic tape

▪ Sequential access, 1 to 12 TB capacity

▪ A few drives with many tapes

▪ Juke boxes with petabytes (1000’s of TB) of storage

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 7th Edition

Storage Interfaces

▪ Disk interface standards families

• SATA (Serial ATA - Advanced Technology Attachment)

▪ SATA 3 supports data transfer speeds of up to 6 gigabits/sec

• SAS (Serial Attached SCSI – Small Computer System Interface)

▪ SAS Version 3 supports 12 gigabits/sec

• NVMe (Non-Volatile Memory Express) interface

▪ Works with PCIe (Peripheral Component Interconnect Express)

connectors to support lower latency and higher transfer rates

▪ Supports data transfer rates of up to 24 gigabits/sec

▪ Disks are usually connected directly to the computer system

▪ In Storage Area Networks (SAN), a large number of disks are connected

by a high-speed network to a number of servers

▪ In Network Attached Storage (NAS) networked storage provides a file

system interface using networked file system protocol, instead of

providing a disk system interface

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 7th Edition

Magnetic Hard Disk Mechanism

Schematic diagram of magnetic disk drive Photo of magnetic disk drive

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 7th Edition

Magnetic Disks

▪ Read-write head

▪ Surface of platter divided into circular tracks

• Over 50K-100K tracks per platter on typical hard disks

▪ Each track is divided into sectors.

• A sector is the smallest unit of data that can be read or written.

• Sector size typically 512 bytes

• Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to

2000 (on outer tracks)

▪ To read/write a sector

• disk arm swings to position head on the right track

• Platter spins continually; data is read/written as the sector passes

under the head

▪ Head-disk assemblies

• multiple disk platters on a single spindle (1 to 5 usually)

• one head per platter, mounted on a common arm.

▪ Cylinder i consists of ith track of all the platters

©Silberschatz, Korth and Sudarshan8.8Database System Concepts - 7th Edition

Magnetic Disks (Cont.)

▪ Disk controller – interfaces between the computer system and the disk

drive hardware.

• accepts high-level commands to read or write a sector

• initiates actions such as moving the disk arm to the right track and

actually reading or writing the data

• Computes and attaches checksums to each sector to verify that

data is read back correctly

▪ If data is corrupted, with a very high probability stored checksum

won’t match the recomputed checksum

• Ensures successful writing by reading back sector after writing it

• Performs remapping of bad sectors

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 7th Edition

Performance Measures of Disks

▪ Access time – the time it takes from when a read or write request is

issued to when data transfer begins. Consists of:

• Seek time – the time it takes to reposition the arm over the correct

track.

▪ Average seek time is 1/2 the worst-case seek time.

• Would be 1/3 if all tracks had the same number of sectors, and

we ignore the time to start and stop the arm movement

▪ 4 to 10 milliseconds on typical disks

• Rotational latency – the time it takes for the sector to be accessed to

appear under the head.

▪ 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

▪ Average latency is 1/2 of the above latency.

• Overall latency is 5 to 20 msec depending on the disk model

▪ Data-transfer rate – the rate at which data can be retrieved from or stored

on the disk.

• 25 to 200 MB per second max rate, lower for inner tracks

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 7th Edition

Performance Measures (Cont.)

▪ Disk block is a logical unit for storage allocation and retrieval

• 4 to 16 kilobytes typically

▪ Smaller blocks: more transfers from disk

▪ Larger blocks: more space wasted due to partially filled blocks

▪ Sequential access pattern

• Successive requests are for successive disk blocks

• Disk seek required only for the first block

▪ Random access pattern

• Successive requests are for blocks that can be anywhere on the disk

• Each access requires a seek

• Transfer rates are low since a lot of time is wasted on seeks

▪ I/O operations per second (IOPS)

• Number of random block reads that a disk can support per second

• 50 to 200 IOPS on current-generation magnetic disks

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 7th Edition

Performance Measures (Cont.)

▪ Mean time to failure (MTTF) – the average time the disk is expected to

run continuously without any failure.

• Typically, 3 to 5 years

• Probability of failure of new disks is quite low, corresponding to a

“theoretical MTTF” of 500,000 to 1,200,000 hours for a new disk

▪ E.g., an MTTF of 1,200,000 hours for a new disk means that given

1000 relatively new disks, on an average one will fail every 1200

hours

• MTTF decreases as disk ages

©Silberschatz, Korth and Sudarshan8.12Database System Concepts - 7th Edition

Flash Storage

▪ NOR flash vs NAND flash

▪ NAND flash

• used widely for storage, cheaper than NOR flash

• requires page-at-a-time read (page: 512 bytes to 4 KB)

▪ 20 to 100 microseconds for a page read

▪ Not much difference between sequential and random read

• Page can only be written once

▪ Must be erased to allow rewrite

▪ Solid-state disks

• Use standard block-oriented disk interfaces, but store data on multiple

flash storage devices internally

• Transfer rate of up to 500 MB/sec using SATA, and

up to 3 GB/sec using NVMe PCIe

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 7th Edition

Flash Storage (Cont.)

▪ Erase happens in units of erase block

• Takes 2 to 5 milliseconds

• Erase block typically 256 KB to 1 MB (128 to 256 pages)

▪ Remapping of logical page addresses to physical page addresses avoids

waiting for erase

▪ Flash translation table tracks mapping

• also stored in a label field of the flash page

• remapping carried out by flash translation layer

▪ After 100,000 to 1,000,000 erases, erase block becomes unreliable and

cannot be used

• wear leveling

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 7th Edition

SSD Performance Metrics

▪ Random reads/writes per second

• Typical 4 KB reads: 10,000 reads per second (10,000 IOPS)

• Typical 4KB writes: 40,000 IOPS

• SSDs support parallel reads

▪ Typical 4KB reads:

• 100,000 IOPS with 32 requests in parallel (QD-32) on SATA

• 350,000 IOPS with QD-32 on NVMe PCIe

▪ Typical 4KB writes:

• 100,000 IOPS with QD-32, even higher on some models

▪ Data transfer rate for sequential reads/writes

• 400 MB/sec for SATA3, 2 to 3 GB/sec using NVMe PCIe

▪ Hybrid disks: combine a small amount of flash cache with a larger

magnetic disk

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 7th Edition

RAID

▪ RAID: Redundant Arrays of Independent Disks

• disk organization techniques that manage a large number of disks,

providing a view of a single disk of

▪ High capacity and high speed by using multiple disks in

parallel,

▪ High reliability by storing data redundantly, so that data can be

recovered even if a disk fails

▪ The chance that some disk out of a set of N disks will fail is much higher

than that of a specific single disk.

• E.g., a system with 100 disks, each with an MTTF of 100,000 hours

(approx. 11 years), will have a system MTTF of 1000 hours (approx.

41 days)

• Techniques for using redundancy to avoid data loss are critical with

large numbers of disks

©Silberschatz, Korth and Sudarshan8.16Database System Concepts - 7th Edition

Improvement of Reliability via Redundancy

▪ Redundancy – store extra information that can be used to rebuild

information lost in a disk failure

▪ E.g., Mirroring (or shadowing)

• Duplicate every disk. A logical disk consists of two physical disks.

• Every write is carried out on both disks

▪ Reads can take place from either disk

• If one disk in a pair fails, data is still available in the other

▪ Data loss would occur only if a disk fails, and its mirror disk also

fails before the system is repaired

• Probability of a combined event is very small

▪ Except for dependent failure modes such as fire or building

collapse or electrical power surges

▪ Mean time to data loss depends on MTTF and mean time to repair

• E.g., MTTF of 100,000 hours, mean time to repair of 10 hours gives

mean time to data loss of 500*106 hours (or 57,000 years) for a

mirrored pair of disks (ignoring dependent failure modes)

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 7th Edition

Improvement in Performance via Parallelism

▪ Two main goals of parallelism in a disk system:

1. Load balance multiple small accesses to increase throughput

2. Parallelize large accesses to reduce response time.

▪ Improve transfer rate by striping data across multiple disks.

▪ Bit-level striping – split the bits of each byte across multiple disks

• In an array of eight disks, write bit i of each byte to disk i.

• Each access can read data at eight times the rate of a single disk.

• But seek/access time worse than for a single disk

▪ Bit level striping is not used much anymore

▪ Block-level striping – with n disks, block i of a file goes to disk (i mod n)

+ 1

• Requests for different blocks can run in parallel if the blocks reside on

different disks

• A request for a long sequence of blocks can utilize all disks in parallel

©Silberschatz, Korth and Sudarshan8.18Database System Concepts - 7th Edition

RAID Levels

▪ Schemes to provide redundancy at lower cost by using disk striping

combined with parity bits

• Different RAID organizations, or RAID levels, have differing cost,

performance and reliability characteristics

▪ RAID Level 0: Block striping; non-redundant.

• Used in high-performance applications where data loss is not critical.

▪ RAID Level 1: Mirrored disks with block striping

• Offers best write performance.

• Popular for applications such as storing log files in a database system.

©Silberschatz, Korth and Sudarshan8.19Database System Concepts - 7th Edition

RAID Levels (Cont.)

▪ Parity blocks: Parity block j stores XOR of bits from block j of each disk

• When writing data to a block j, parity block j must also be computed

and written to disk

▪ Can be done by using the old parity block, the old value of the

current block, and the new value of the current block (2 block

reads + 2 block writes)

▪ Or by recomputing the parity value using the new values of blocks

corresponding to the parity block

• More efficient for writing large amounts of data sequentially

• To recover data for a block, compute XOR of bits from all other

blocks in the set including the parity block

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 7th Edition

RAID Levels (Cont.)

▪ RAID Level 5: Block-Interleaved Distributed Parity; partitions data and

parity among all N + 1 disks, rather than storing data in N disks and parity

in 1 disk.

• E.g., with 5 disks, the parity block for the nth set of blocks is stored

on disk (n mod 5) + 1, with the data blocks stored on the other 4

disks.

©Silberschatz, Korth and Sudarshan8.21Database System Concepts - 7th Edition

RAID Levels (Cont.)

▪ RAID Level 5 (Cont.)

• Block writes occur in parallel if the blocks and their parity blocks are

on different disks.

▪ RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores

two error correction blocks (P, Q) instead of a single parity block to guard

against multiple disk failures.

• Better reliability than Level 5 at a higher cost

▪ Becoming more important as storage sizes increase

©Silberschatz, Korth and Sudarshan8.22Database System Concepts - 7th Edition

RAID Levels (Cont.)

▪ Other levels (not used in practice):

• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit

striping.

• RAID Level 3: Bit-Interleaved Parity

• RAID Level 4: Block-Interleaved Parity; uses block-level striping,

and keeps a parity block on a separate parity disk for corresponding

blocks from N other disks.

▪ RAID 5 is better than RAID 4, since with RAID 4 with random

writes, the parity disk gets a much higher write load than other

disks and becomes a bottleneck

©Silberschatz, Korth and Sudarshan8.23Database System Concepts - 7th Edition

Choice of RAID Level

▪ Factors in choosing a RAID level

• Monetary cost

• Performance: Number of I/O operations per second, and bandwidth
during normal operation

• Performance during failure

• Performance during the rebuild of a failed disk

▪ Including time taken to rebuild failed disk

▪ RAID 0 is used only when data safety is not important

• E.g., data can be recovered quickly from other sources

©Silberschatz, Korth and Sudarshan8.24Database System Concepts - 7th Edition

Choice of RAID Level (Cont.)

▪ Level 1 provides much better writing performance than Level 5

• Level 5 requires at least 2 block reads and 2 block writes to write a

single block, whereas Level 1 only requires 2 block writes

▪ Level 1 has a higher storage cost than Level 5

▪ Level 5 is preferred for applications where writes are sequential and large

(many blocks), and need large amounts of data storage

▪ RAID 1 is preferred for applications with many random/small updates

▪ Level 6 gives better data protection than RAID 5 since it can tolerate two

disk (or disk block) failures

• Increasing in importance since latent block failures on one disk,

coupled with a failure of another disk can result in data loss with RAID

1 and RAID 5.

©Silberschatz, Korth and Sudarshan8.25Database System Concepts - 7th Edition

Hardware Issues

▪ Software RAID: RAID implementations done entirely in software, with

no special hardware support

▪ Hardware RAID: RAID implementations with special hardware

• Use non-volatile RAM to record writes that are being executed

• Beware: power failure during writing can result in a corrupted disk

▪ E.g., failure after writing one block but before writing the second

in a mirrored system

▪ Such corrupted data must be detected when power is restored

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 7th Edition

Optimization of Disk-Block Access

▪ Buffering: in-memory buffer to cache disk blocks

▪ Read-ahead: Read extra blocks from a track in anticipation that they will

be requested soon

▪ Disk-arm-scheduling algorithms re-order block requests so that disk arm

movement is minimized

• elevator algorithm

R1 R5 R2 R4R3R6

Inner track Outer track

©Silberschatz, Korth and Sudarshan8.27Database System Concepts - 7th Edition

File Organization

▪ The database is stored as a collection of files. Each file is a sequence of

records. A record is a sequence of fields.

▪ One approach

• Assume record size is fixed

• Each file has records of one particular type only

• Different files are used for different relations

This case is easiest to implement; will consider variable length records

later

▪ We assume that records are smaller than a disk block

.

©Silberschatz, Korth and Sudarshan8.28Database System Concepts - 7th Edition

Fixed-Length Records

▪ Simple approach:

• Store record i starting from byte n (i – 1), where n is the size of

each record.

• Record access is simple but records may cross blocks

▪ Modification: do not allow records to cross block boundaries

©Silberschatz, Korth and Sudarshan8.29Database System Concepts - 7th Edition

Fixed-Length Records

▪ Deletion of record i: alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list

Record 3 deleted

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 7th Edition

Fixed-Length Records

▪ Deletion of record i: alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list

Record 3 deleted and replaced by record 11

©Silberschatz, Korth and Sudarshan8.31Database System Concepts - 7th Edition

Fixed-Length Records

▪ Deletion of record i: alternatives:

• move records i + 1, . . ., n to i, . . . , n – 1

• move record n to i

• do not move records, but link all free records on a free list

©Silberschatz, Korth and Sudarshan8.32Database System Concepts - 7th Edition

Variable-Length Records

▪ Variable-length records arise in database systems in several ways:

• Storage of multiple record types in a file.

• Record types that allow variable lengths for one or more fields such

as strings (varchar)

• Record types that allow repeating fields (used in some older data

models).

▪ Attributes are stored in order

▪ Variable length attributes represented by fixed size (offset, length), with

actual data stored after all fixed length attributes

▪ Null values represented by a null-value bitmap

©Silberschatz, Korth and Sudarshan8.33Database System Concepts - 7th Edition

Variable-Length Records: Slotted Page Structure

▪ Slotted page header contains:

• number of record entries

• end of free space in the block

• location and size of each record

▪ Records can be moved around within a page to keep them contiguous

with no empty space between them; entry in the header must be

updated.

▪ Pointers should not point directly to the record — instead they should

point to the entry for the record in the header.

©Silberschatz, Korth and Sudarshan8.34Database System Concepts - 7th Edition

Storing Large Objects

▪ E.g., blob/clob types

▪ Records must be smaller than pages

▪ Alternatives:

• Store as files in file systems

• Store as files managed by a database

• Break into pieces and store in multiple tuples in separate relation

▪ PostgreSQL TOAST

©Silberschatz, Korth and Sudarshan8.35Database System Concepts - 7th Edition

Organization of Records in Files

▪ Heap – a record can be placed anywhere in the file where there is space

▪ Sequential – store records in sequential order, based on the value of the

search key of each record

▪ In a multi-table clustering file organization records of several different

relations can be stored in the same file

• Motivation: store related records on the same block to minimize I/O

▪ B+-tree file organization

• Ordered storage even with inserts/deletes

• More in the following Chapter

• Hashing – a hash function computed on the search key; the result

specifies in which block of the file the record should be placed

• More in the following Chapter

©Silberschatz, Korth and Sudarshan8.36Database System Concepts - 7th Edition

Sequential File Organization

▪ Suitable for applications that require sequential processing of

the entire file

▪ The records in the file are ordered by a search-key

©Silberschatz, Korth and Sudarshan8.37Database System Concepts - 7th Edition

Sequential File Organization (Cont.)

▪ Deletion – use pointer chains

▪ Insertion –locate the position where the record is to be inserted

• if there is free space insert there

• if no free space, insert the record in an overflow block

• In either case, pointer chain must be updated

▪ Need to reorganize the file

from time to time to restore

sequential order

©Silberschatz, Korth and Sudarshan8.38Database System Concepts - 7th Edition

Multitable Clustering File Organization

Store several relations in one file using a multi-table clustering

file organization

department

instructor

multitable clustering

of department and

instructor

©Silberschatz, Korth and Sudarshan8.39Database System Concepts - 7th Edition

Multitable Clustering File Organization (cont.)

▪ good for queries involving department ⨝ instructor, and for queries

involving one single department and its instructors

▪ bad for queries involving only department

▪ results in variable size records

▪ Can add pointer chains to link records of a particular relation

©Silberschatz, Korth and Sudarshan8.40Database System Concepts - 7th Edition

Partitioning

▪ Table partitioning: Records in a relation can be partitioned into smaller

relations that are stored separately

▪ E.g., transaction relation may be partitioned into

transaction_2018, transaction_2019, etc.

▪ Queries written on transaction must access records in all partitions

• Unless query has a selection such as year=2019, in which case only

one partition in needed

▪ Partitioning

• Reduces costs of some operations such as free space management

• Allows different partitions to be stored on different storage devices

▪ E.g., transaction partition for the current year on SSD, for older

years on a magnetic disk

©Silberschatz, Korth and Sudarshan8.41Database System Concepts - 7th Edition

Data Dictionary Storage

▪ Information about relations

• names of relations

• names, types, and lengths of attributes of each relation

• names and definitions of views

• integrity constraints

▪ User and accounting information, including passwords

▪ Statistical and descriptive data

• number of tuples in each relation

▪ Physical file organization information

• How relation is stored (sequential/hash/…)

• Physical location of relation

▪ Information about indices

The Data dictionary (also called system catalog) stores

metadata; that is, data about data, such as

©Silberschatz, Korth and Sudarshan8.42Database System Concepts - 7th Edition

Relational Representation of System Metadata

▪ Relational

representation on

disk

▪ Specialized data

structures designed

for efficient access,

in memory

©Silberschatz, Korth and Sudarshan8.43Database System Concepts - 7th Edition

Storage Access

▪ Blocks are units of both storage allocation and data transfer.

▪ Database system seeks to minimize the number of block transfers

between the disk and memory. We can reduce the number of disk

accesses by keeping as many blocks as possible in the main memory.

▪ Buffer – portion of main memory available to store copies of disk blocks.

▪ Buffer manager – subsystem responsible for allocating buffer space in

main memory.

©Silberschatz, Korth and Sudarshan8.44Database System Concepts - 7th Edition

Buffer Manager

▪ Programs call on the buffer manager when they need a block from the

disk.

• If the block is already in the buffer, the buffer manager returns the

address of the block in the main memory

• If the block is not in the buffer, the buffer manager

▪ Allocates space in the buffer for the block

• Replacing (throwing out) some other block, if required, to make

space for the new block.

• Replaced block written back to disk only if it was modified since

the most recent time that it was written to/fetched from the disk.

▪ Reads the block from the disk to the buffer, and returns the

address of the block in the main memory to the requester.

©Silberschatz, Korth and Sudarshan8.45Database System Concepts - 7th Edition

Buffer Manager

▪ Buffer replacement strategy

▪ Pinned block: memory block that is not allowed to be written back to disk

• Pin done before reading/writing data from a block

• Unpin done when read /write is complete

• Multiple concurrent pin/unpin operations possible

▪ Keep a pin count, buffer block can be evicted only if pin count = 0

▪ Shared and exclusive locks on buffer

• Needed to prevent concurrent operations from reading page contents

as they are moved/reorganized, and to ensure only one

move/reorganize at a time

• Readers get shared lock, updates to a block require an exclusive lock

• Locking rules:

▪ Only one process can get the exclusive lock at a time

▪ Shared lock cannot be concurrent with the exclusive lock

▪ Multiple processes may be given shared lock concurrently

©Silberschatz, Korth and Sudarshan8.46Database System Concepts - 7th Edition

Buffer-Replacement Policies

▪ Most operating systems replace the block least recently used (LRU

strategy)

• Idea behind LRU – use past pattern of block references as a predictor

of future references

• LRU can be bad for some queries

▪ Queries have well-defined access patterns (such as sequential scans),

and a database system can use the information in a user’s query to

predict future references

▪ Mixed strategy with hints on replacement strategy provided

by the query optimizer is preferable

▪ Example of bad access pattern for LRU: when computing the join of 2

relations r and s by the nested loops

for each tuple tr of r do

for each tuple ts of s do

if the tuples tr and ts match …

©Silberschatz, Korth and Sudarshan8.47Database System Concepts - 7th Edition

Buffer-Replacement Policies (Cont.)

▪ Toss-immediate strategy – frees the space occupied by a block as soon

as the final tuple of that block has been processed

▪ Most recently used (MRU) strategy – the system must pin the block

currently being processed. After the final tuple of that block has been

processed, the block is unpinned, and it becomes the most recently used

block.

▪ Buffer manager can use statistical information regarding the probability

that a request will reference a particular relation

• E.g., the data dictionary is frequently accessed. Heuristic: keep

data-dictionary blocks in the main memory buffer

▪ Operating system or buffer manager may reorder writes

• Can lead to corruption of data structures on disk

▪ E.g., a linked list of blocks with a missing block on the disk

▪ File systems perform consistency checks to detect such situations

• Careful ordering of writes can avoid many such problems

©Silberschatz, Korth and Sudarshan8.48Database System Concepts - 7th Edition

Column-Oriented Storage

▪ Also known as columnar representation

▪ Store each attribute of a relation separately

▪ Example

©Silberschatz, Korth and Sudarshan8.49Database System Concepts - 7th Edition

Columnar Representation

▪ Benefits:

• Reduced IO if only some attributes are accessed

• Improved CPU cache performance

• Improved compression

• Vector processing on modern CPU architectures

▪ Drawbacks

• Cost of tuple reconstruction from columnar representation

• Cost of tuple deletion and update

• Cost of decompression

▪ Columnar representation was found to be more efficient for decision support

than row-oriented representation

▪ Traditional row-oriented representation preferable for transaction processing

▪ Some databases support both representations

• Called hybrid row/column stores

©Silberschatz, Korth and Sudarshan8.50Database System Concepts - 7th Edition

End of Chapter 8

	Snímek 1: Chapter 8: Physical Storage and Data Structures
	Snímek 2: Classification of Physical Storage Media
	Snímek 3: Storage Hierarchy
	Snímek 4: Storage Hierarchy (Cont.)
	Snímek 5: Storage Interfaces
	Snímek 6: Magnetic Hard Disk Mechanism
	Snímek 7: Magnetic Disks
	Snímek 8: Magnetic Disks (Cont.)
	Snímek 9: Performance Measures of Disks
	Snímek 10: Performance Measures (Cont.)
	Snímek 11: Performance Measures (Cont.)
	Snímek 12: Flash Storage
	Snímek 13: Flash Storage (Cont.)
	Snímek 14: SSD Performance Metrics
	Snímek 15: RAID
	Snímek 16: Improvement of Reliability via Redundancy
	Snímek 17: Improvement in Performance via Parallelism
	Snímek 18: RAID Levels
	Snímek 19: RAID Levels (Cont.)
	Snímek 20: RAID Levels (Cont.)
	Snímek 21: RAID Levels (Cont.)
	Snímek 22: RAID Levels (Cont.)
	Snímek 23: Choice of RAID Level
	Snímek 24: Choice of RAID Level (Cont.)
	Snímek 25: Hardware Issues
	Snímek 26: Optimization of Disk-Block Access
	Snímek 27: File Organization
	Snímek 28: Fixed-Length Records
	Snímek 29: Fixed-Length Records
	Snímek 30: Fixed-Length Records
	Snímek 31: Fixed-Length Records
	Snímek 32: Variable-Length Records
	Snímek 33: Variable-Length Records: Slotted Page Structure
	Snímek 34: Storing Large Objects
	Snímek 35: Organization of Records in Files
	Snímek 36: Sequential File Organization
	Snímek 37: Sequential File Organization (Cont.)
	Snímek 38: Multitable Clustering File Organization
	Snímek 39: Multitable Clustering File Organization (cont.)
	Snímek 40: Partitioning
	Snímek 41: Data Dictionary Storage
	Snímek 42: Relational Representation of System Metadata
	Snímek 43: Storage Access
	Snímek 44: Buffer Manager
	Snímek 45: Buffer Manager
	Snímek 46: Buffer-Replacement Policies
	Snímek 47: Buffer-Replacement Policies (Cont.)
	Snímek 48: Column-Oriented Storage
	Snímek 49: Columnar Representation
	Snímek 50: End of Chapter 8

