

# **Chapter 9: Indexing**

**Database System Concepts, 7th Ed.** 

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use



## **Outline**

- Basic Concepts
- Ordered Indices
- B+-Tree Index Files
- B-Tree Index Files
- Hashing
- Spatio-Temporal Indexing



## **Basic Concepts**

- Indexing mechanisms used to speed up access to desired data.
  - E.g., author catalog in a library
- Search Key an attribute or a set of attributes used to look up records in a file.
- An index file consists of records (called index entries) of the form

| pointer |
|---------|
|         |

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
  - Ordered indices: search keys are stored in sorted order
  - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".



#### **Index Evaluation Metrics**

- Access types supported efficiently. e.g.,
  - Records with a specified value in the attribute
  - Records with an attribute value falling in a specified range of values.
- Access time
- Insertion time
- Deletion time
- Space overhead



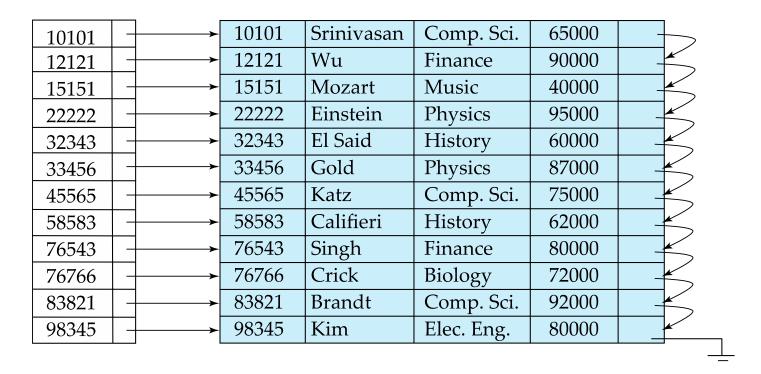
#### **Ordered Indices**

- In an ordered index, index entries are stored on the search key value.
- Clustering index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file.
  - Also called primary index
  - The search key of a primary index is usually but not necessarily the primary key.
- Secondary index: an index whose search key specifies an order different from the sequential order of the file. Also called nonclustering index.
- Index-sequential file: sequential file ordered on a search key, with a clustering index on the search key.



#### **Dense Index Files**

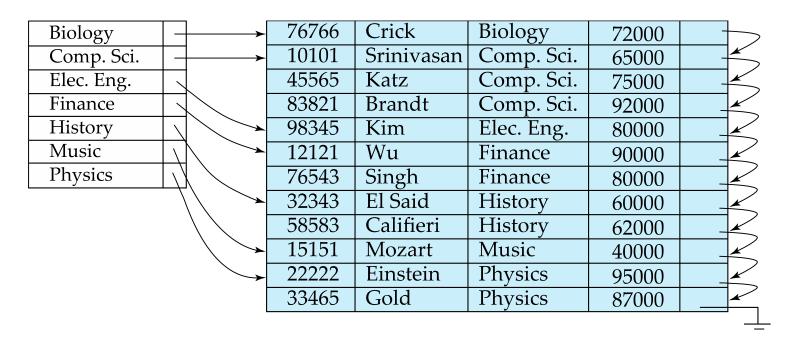
- Dense index Index record appears for every search-key value in the file.
- E.g. index on ID attribute of instructor relation





## **Dense Index Files (Cont.)**

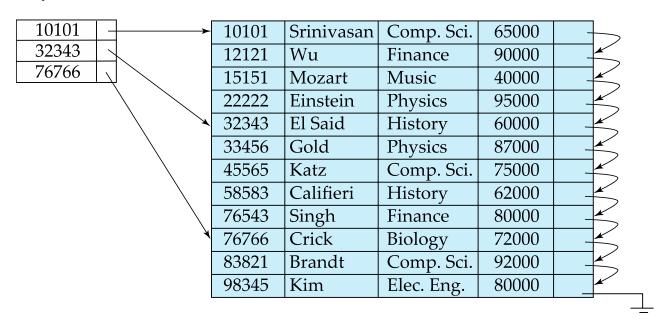
Dense index on dept\_name, with instructor file sorted on dept\_name





## **Sparse Index Files**

- Sparse Index: contains index records for only some search-key values.
  - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
  - Find the index record with the largest search-key value < K</li>
  - Search file sequentially starting at the record to which the index record points



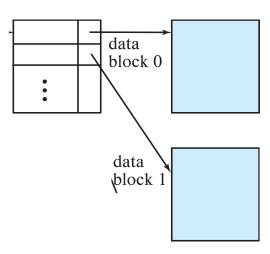


# **Sparse Index Files (Cont.)**

- Compared to dense indices:
  - Less space and less maintenance overhead for insertions and deletions.
  - Generally slower than the dense index for locating records.

#### Good tradeoff:

 For clustered index: sparse index with an index entry for every block in the file, corresponding to the least search-key value in the block.

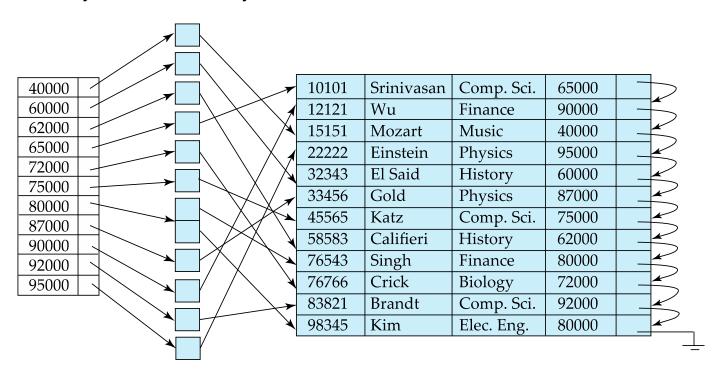


• For unclustered index: sparse index on top of dense index (multilevel index)



## **Secondary Indices Example**

Secondary index on salary field of instructor



- Index record points to a bucket that contains pointers to all the actual records with that particular search-key value.
- Secondary indices have to be dense

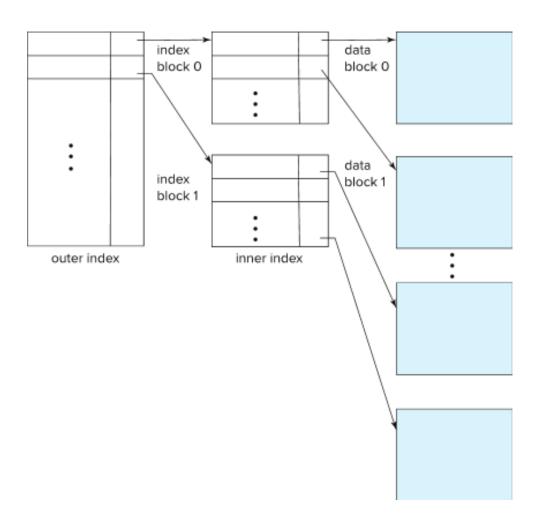


#### Multilevel Index

- If the index does not fit in memory, access becomes expensive.
- Solution: treat the index kept on disk as a sequential file and construct a sparse index on it.
  - outer index a sparse index of the basic index
  - inner index the basic index file
- If even the outer index is too large to fit in the main memory, yet another level of the index can be created, and so on.
- Indices at all levels must be updated on insertion or deletion from the file.



# Multilevel Index (Cont.)



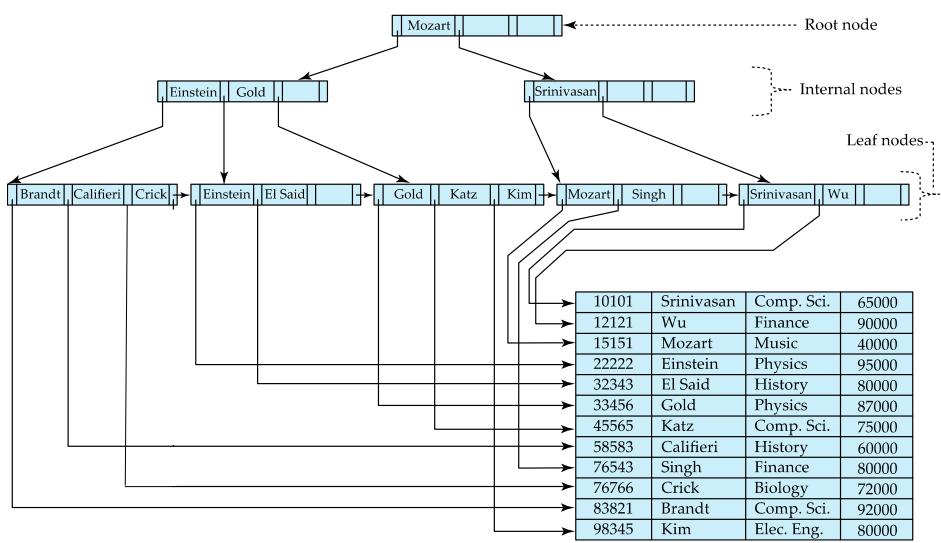


## **Indices on Multiple Keys**

- Composite search key
  - E.g., index on instructor relation on attributes (name, ID)
  - Values are sorted lexicographically
    - E.g. (John, 12121) < (John, 13514) and (John, 13514) < (Peter, 11223)</li>
  - Can query on just name, or on (name, ID)



## **Example of B+-Tree**





## B\*-Tree Index Files (Cont.)

A B+-tree is a rooted tree satisfying the following properties:

- All paths from the root to a leaf are of the same length
- Each node that is not a root or a leaf has between \[ n/2 \] and n children.
- A leaf node has between  $\lceil (n-1)/2 \rceil$  and n-1 values
- Special cases:
  - If the root is not a leaf, it has at least 2 children.
  - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (*n*–1) values.



#### B\*-Tree Node Structure

Typical node



- K<sub>i</sub> are the search-key values
- P<sub>i</sub> are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes).
- The search keys in a node are ordered

$$K_1 < K_2 < K_3 < \ldots < K_{n-1}$$

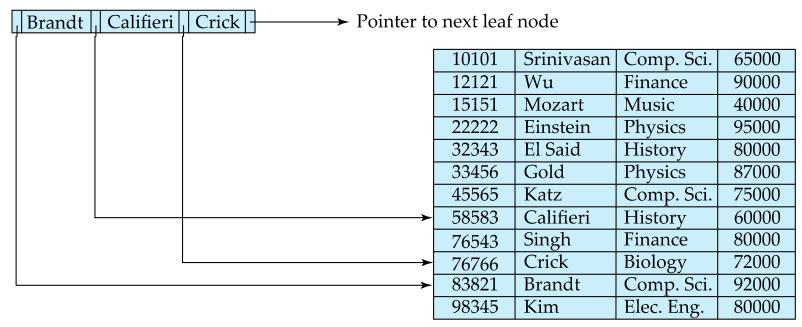
(Initially assume no duplicate keys, address duplicates later)



## **Leaf Nodes in B+-Trees**

#### Properties of a leaf node:

- For i = 1, 2, ..., n-1, pointer  $P_i$  points to a file record with search-key value  $K_i$ ,
- If  $L_i$ ,  $L_j$  are leaf nodes and i < j,  $L_i$ 's search-key values are less than or equal to  $L_j$ 's search-key values
- $P_n$  points to next leaf node in search-key order leaf node





#### Non-Leaf Nodes in B+-Trees

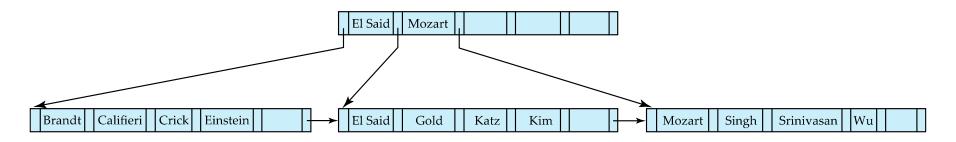
- Non-leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node with n pointers:
  - All the search keys in the subtree to which  $P_1$  points are less than  $K_1$
  - For  $2 \le i \le n-1$ , all the search keys in the subtree to which  $P_i$  points have values greater than or equal to  $K_{i-1}$  and less than  $K_i$
  - All the search keys in the subtree to which  $P_n$  points have values greater than or equal to  $K_{n-1}$
  - General structure

| $P_1$ $K_1$ | $P_2$ | $P_{n-1}$ | $K_{n-1}$ | $P_n$ |
|-------------|-------|-----------|-----------|-------|
|-------------|-------|-----------|-----------|-------|



## **Example of B\*-tree**

• B+-tree for *instructor* file (n = 6)



- Leaf nodes must have between 3 and 5 values  $(\lceil (n-1)/2 \rceil)$  and n-1, with n=6.
- Non-leaf nodes other than root must have between 3 and 6 children ( $\lceil (n/2 \rceil)$  and n with n = 6).
- Root must have at least 2 children.



#### Observations about B+-trees

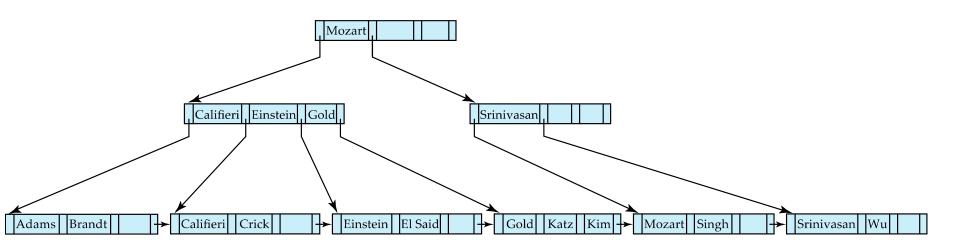
- Since the inter-node connections are done by pointers, "logically" close blocks need not be "physically" close.
- The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
- The B+-tree contains a relatively small number of levels
  - Level below root has at least 2\* \[ n/2 \] values
  - Next level has at least 2\* \[ \text{n/2} \] \* \[ \text{n/2} \] values
  - .. etc.
  - If there are K search-key values in the file, the tree height is no more than  $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$
  - thus searches can be conducted efficiently.
- Insertions and deletions to the main file can be handled efficiently, as the index can be restructured in logarithmic time.



## Queries on B+-Trees

#### function find(v)

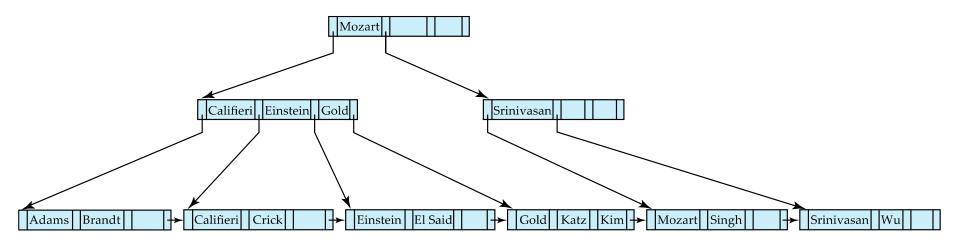
- 1. C=root
- 2. while (C is not a leaf node)
  - 1. Let *i* be least number s.t.  $V \le K_i$ .
  - 2. **if** there is no such number *i then*
  - 3. Set C = last non-null pointer in C
  - **4. else if**  $(v = C.K_i)$  Set  $C = P_{i+1}$
  - 5. else set  $C = C.P_i$
- 3. **if** for some i,  $K_i = V$  **then** return  $C.P_i$
- 4. **else** return null /\* no record with search-key value *v* exists. \*/





## **Queries on B\*-Trees (Cont.)**

- Range queries find all records with search key values in a given range
  - See book for details of function findRange(lb, ub) which returns set of all such records
  - Real implementations usually provide an iterator interface to fetch matching records one at a time, using a next() function





## **Queries on B+Trees (Cont.)**

- If there are K search-key values in the file, the height of the tree is no more than  $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$ .
- A node is generally the same size as a disk block, typically 4 kilobytes
  - and n is typically around 100 (40 bytes per index entry).
- With 1 million search key values and n = 100
  - at most  $log_{50}(1,000,000) = 4$  nodes are accessed in a lookup traversal from root to leaf.
- Contrast this with a balanced binary tree with 1 million search key values
  around 20 nodes are accessed in a lookup
  - above difference is significant since every node access may need a disk I/O, costing around 20 milliseconds



## **Non-Unique Keys**

- If a search key  $a_i$  is not unique, create instead an index on a composite key  $(a_i, A_p)$ , which is unique
  - $A_p$  could be a primary key, record ID, or any other attribute that guarantees uniqueness
- Search for  $a_i = v$  can be implemented by a range search on a composite key, with range  $(v, -\infty)$  to  $(v, +\infty)$
- But more I/O operations are needed to fetch the actual records
  - If the index is clustering, all accesses are sequential+
  - If the index is non-clustering, each record access may need an I/O operation



## **Updates on B+-Trees: Insertion**

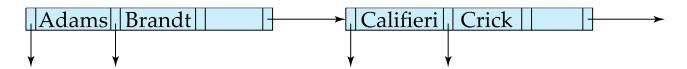
Assume a record is already added to the file. Let

- pr be a pointer to the record and let
- v be the search key value of the record
- 1. Find the leaf node in which the search-key value would appear
  - 1. If there is room in the leaf node, insert (*v*, *pr*) pair in the leaf node
  - 2. Otherwise, split the node (along with the new (*v*, *pr*) entry) as discussed in the next slide, and propagate updates to parent nodes.



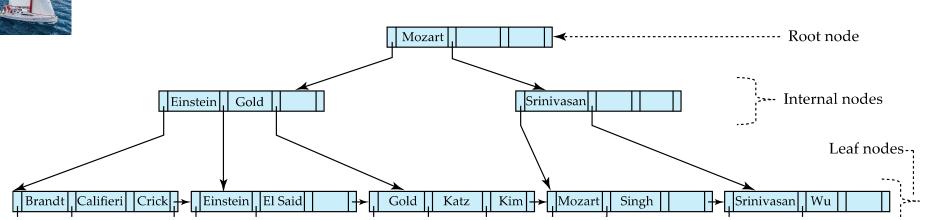
## **Updates on B\*-Trees: Insertion (Cont.)**

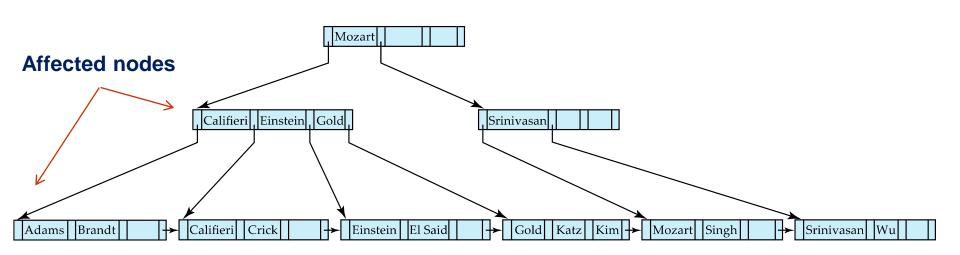
- Splitting a leaf node:
  - take the n (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first \( \frac{n}{2} \) in the original node, and the rest in a new node.
  - let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the node being split.
  - If the parent is full, split it and propagate the split further up.
- Splitting of nodes proceeds upwards till a node that is not full is found.
  - In the worst case, the root node may be split, increasing the tree's height by 1.



Result of splitting node containing Brandt, Califieri and Crick on inserting Adams Next step: insert entry with (Califieri, pointer-to-new-node) into parent

# B+-Tree Insertion

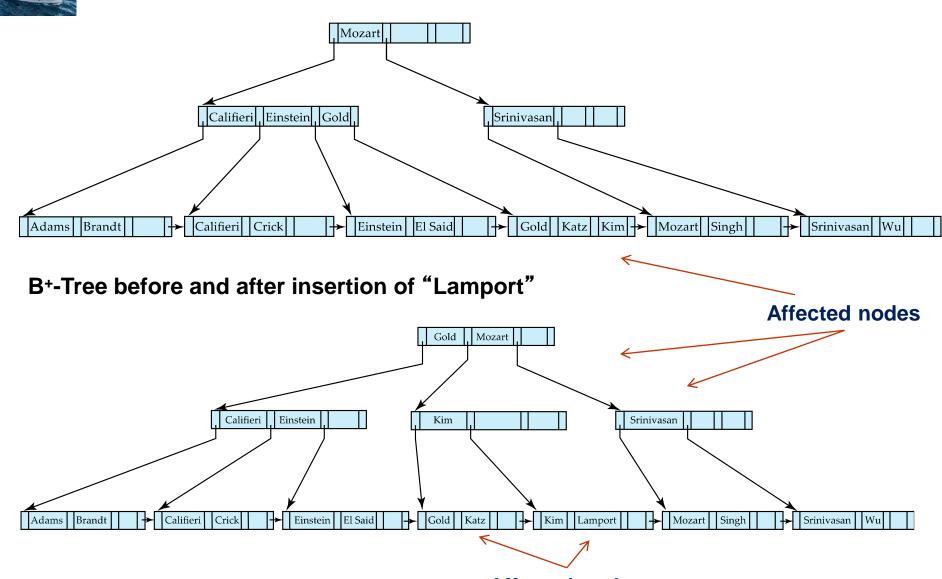




B+-Tree before and after insertion of "Adams"



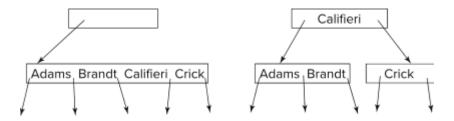
## B+-Tree Insertion





# Insertion in B+-Trees (Cont.)

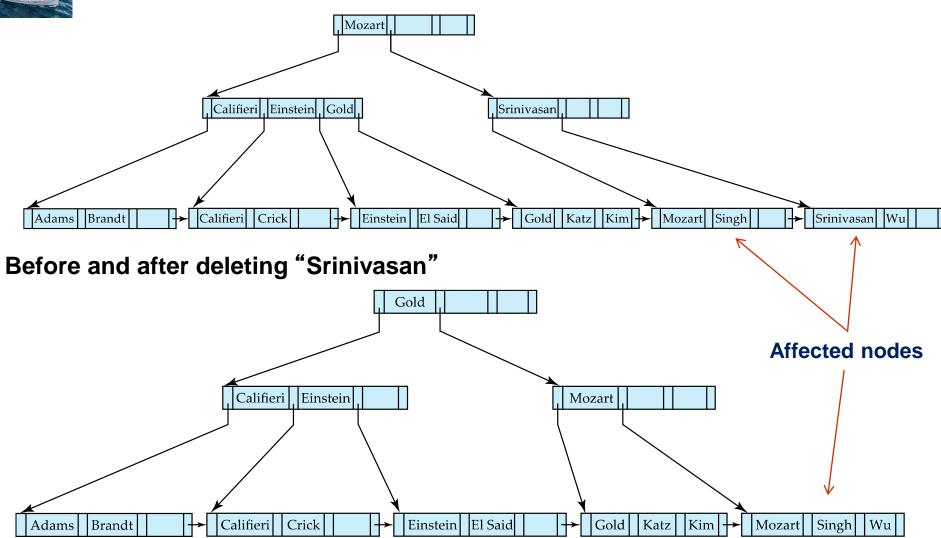
- Splitting a non-leaf node: when inserting (k,p) into an already full internal node N
  - Copy N to an in-memory area M with space for n+1 pointers and n keys
  - Insert (k,p) into M
  - Copy P<sub>1</sub>,K<sub>1</sub>, ..., K<sub>[n/2]-1</sub>,P<sub>[n/2]</sub> from M back into node N
  - Copy P<sub>[n/2]+1</sub>, K<sub>[n/2]+1</sub>,...,K<sub>n</sub>,P<sub>n+1</sub> from M into newly allocated node N'
  - Insert (K<sub>\(\bar{n}/2\)\</sub>,N') into parent N
- Example



Read pseudocode in book!



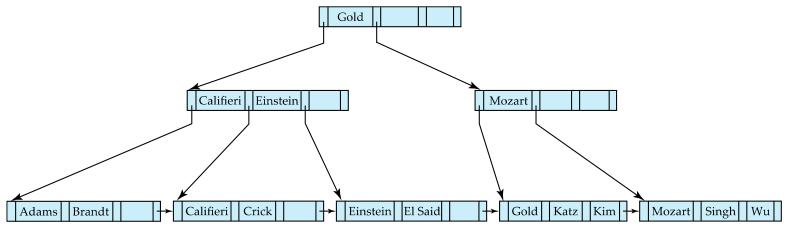
## **Examples of B\*-Tree Deletion**

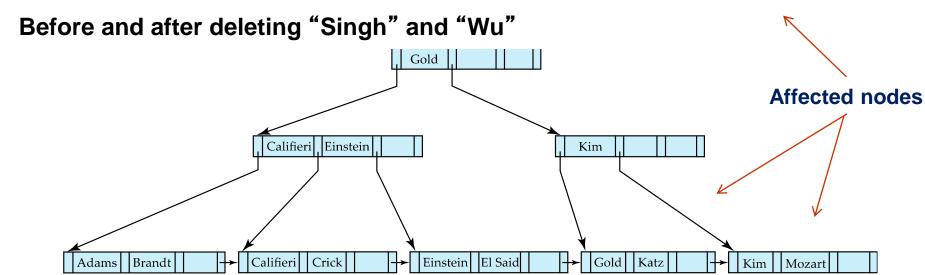


Deleting "Srinivasan" causes merging of under-full leaves



## **Examples of B+-Tree Deletion (Cont.)**

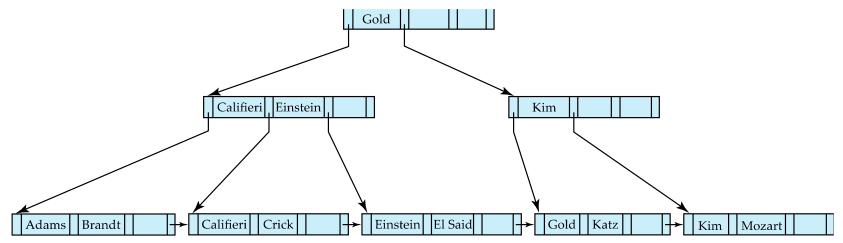




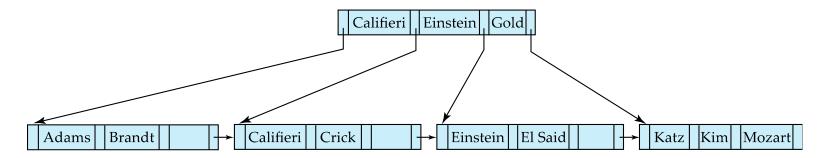
- Leaf containing Singh and Wu became underfull and borrowed a value
  Kim from its left sibling
- Search-key value in the parent changes as a result



## **Example of B\*-tree Deletion (Cont.)**



#### Before and after deletion of "Gold"



- Node with Gold and Katz became underfull and was merged with its sibling
- Parent node becomes underfull and is merged with its sibling
  - Value separating two nodes (at the parent) is pulled down when merging
- Root node then has only one child, and is deleted



## **Updates on B\*-Trees: Deletion**

Assume a record is already deleted from the file. Let *V* be the search key value of the record, and *Pr* be the pointer to the record.

- Remove (Pr, V) from the leaf node
- If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then merge siblings:
  - Insert all the search-key values in the two nodes into a single node (the one on the left), and delete the other node.
  - Delete the pair  $(K_{i-1}, P_i)$ , where  $P_i$  is the pointer to the deleted node, from its parent, recursively using the above procedure.



## **Updates on B\*-Trees: Deletion**

- Otherwise, if the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then redistribute pointers:
  - Redistribute the pointers between the node and a sibling such that both have more than the minimum number of entries.
  - Update the corresponding search-key value in the parent of the node.
- The node deletions may cascade upwards till a node that has  $\lceil n/2 \rceil$  or more pointers is found.
- If the root node has only one pointer after deletion, it is deleted and the sole child becomes the root.



## **Complexity of Updates**

- Cost (in terms of the number of I/O operations) of insertion and deletion of a single entry proportional to the height of the tree
  - With K entries and maximum fanout of n, worst case complexity of insert/delete of an entry is  $O(\log_{\lceil n/2 \rceil}(K))$
- In practice, number of I/O operations is less:
  - Internal nodes tend to be in a buffer
  - Splits/merges are rare, most insert/delete operations only affect a leaf node
- Average node occupancy depends on the insertion order
  - 2/3rds with random, much more with insertion in sorted order



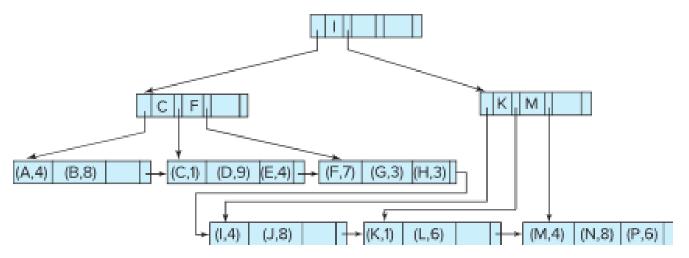
## **B**<sup>+</sup>-Tree File Organization

- B+-Tree File Organization:
  - Leaf nodes in a B+-tree file organization store records, instead of pointers
  - Helps keep data records clustered even when there are insertions/deletions/updates
- Leaf nodes are still required to be half full
  - Since records are larger than pointers, the maximum number of records that can be stored in a leaf node is less than the number of pointers in a non-leaf node.
- Insertion and deletion are handled in the same way as insertion and deletion of entries in a B+-tree index.



#### B\*-Tree File Organization (Cont.)

Example of B+-tree File Organization



- Good space utilization is important since records use more space than pointers.
- To improve space utilization, involve more sibling nodes in redistribution during splits and merges
  - Involving 2 siblings in redistribution (to avoid split/merge where possible) results in each node having at least  $\lfloor 2n/3 \rfloor$  entries

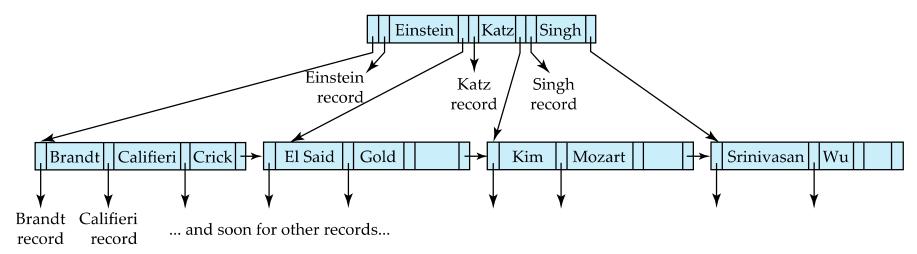


#### **Bulk Loading and Bottom-Up Build**

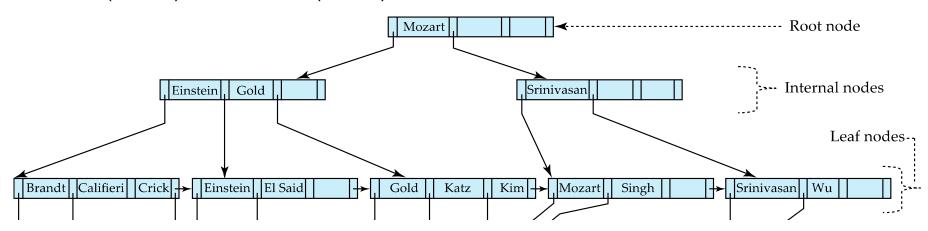
- Inserting entries one-at-a-time into a B⁺-tree requires ≥ 1 IO per entry
  - assuming leaf level does not fit in memory
  - can be very inefficient for loading a large number of entries at a time (bulk loading)
- Efficient alternative 1:
  - sort entries first (using efficient external-memory sort algorithms to be discussed later)
  - insert in sorted order
    - insertion will go to an existing page (or cause a split)
    - much improved IO performance, but most leaf nodes half full
- Efficient alternative 2: Bottom-up B\*-tree construction
  - As before sort entries
  - And then create tree layer-by-layer, starting with leaf level
    - details as an exercise
  - Implemented as part of bulk-load utility by most database systems



## **B-Tree Index File Example**



#### B-tree (above) and B+-tree (below) on same data





# Hashing



### **Static Hashing**

- A bucket is a unit of storage containing one or more entries (a bucket is typically a disk block).
  - we obtain the bucket of an entry from its search-key value using a hash function
- Hash function h is a function from the set of all search-key values K to the set of all bucket addresses B.
- Hash function is used to locate entries for access, insertion as well as deletion.
- Entries with different search-key values may be mapped to the same bucket; thus entire bucket has to be searched sequentially to locate an entry.
- In a hash index, buckets store entries with pointers to records
- In a hash file organization buckets store records



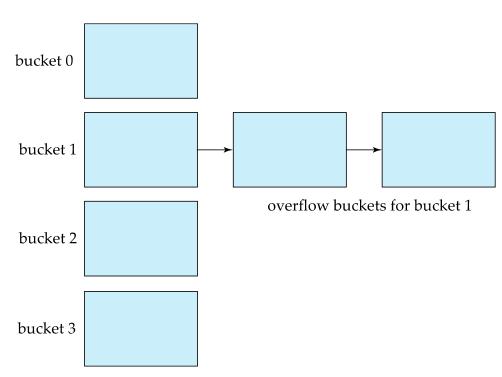
#### **Handling of Bucket Overflows**

- Bucket overflow can occur because of
  - Insufficient bucket capacity
  - Skew in the distribution of records. This can occur due to two reasons:
    - Multiple records have the same search-key value
    - Chosen hash function produces a non-uniform distribution of key values
- Although the probability of bucket overflow can be reduced, it cannot be eliminated; it is handled by using overflow buckets.



## **Handling of Bucket Overflows (Cont.)**

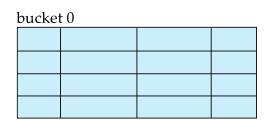
- Overflow chaining the overflow buckets of a given bucket are chained together in a linked list.
- Above scheme is called closed addressing (also called closed hashing or open hashing depending on the book you use)
  - An alternative, called open addressing (also called open hashing or closed hashing depending on the book you use) which does not use overflow buckets, is not suitable for database applications.





## **Example of Hash File Organization**

Hash file organization of *instructor* file, using *dept\_name* as key.



#### bucket 1

| 15151 | Mozart | Music | 40000 |
|-------|--------|-------|-------|
|       |        |       |       |
|       |        |       |       |
|       |        |       |       |

#### bucket 2

| 32343 | El Said   | History | 80000 |
|-------|-----------|---------|-------|
| 58583 | Califieri | History | 60000 |
|       |           |         |       |
|       |           |         | ·     |

#### bucket 3

| 22222 | Einstein | Physics    | 95000 |
|-------|----------|------------|-------|
| 33456 | Gold     | Physics    | 87000 |
| 98345 | Kim      | Elec. Eng. | 80000 |
|       |          |            |       |

#### bucket 4

| 12121 | Wu    | Finance | 90000 |
|-------|-------|---------|-------|
| 76543 | Singh | Finance | 80000 |
|       |       |         |       |
|       |       |         |       |

#### bucket 5

| 76766 | Crick | Biology | 72000 |
|-------|-------|---------|-------|
|       |       |         |       |
|       |       |         |       |
|       |       |         |       |

#### bucket 6

| 10101 | Srinivasan | Comp. Sci. | 65000 |
|-------|------------|------------|-------|
| 45565 | Katz       | Comp. Sci. | 75000 |
| 83821 | Brandt     | Comp. Sci. | 92000 |
|       |            |            |       |

#### bucket 7



### **Deficiencies of Static Hashing**

- In static hashing, function h maps search-key values to a fixed set of B of bucket addresses. Databases grow or shrink with time.
  - If the initial number of buckets is too small, and the file grows, performance will degrade due to too many overflows.
  - If space is allocated for anticipated growth, a significant amount of space will be wasted initially (and buckets will be underfull).
  - If the database shrinks, again space will be wasted.
- One solution: periodic re-organization of the file with a new hash function
  - Expensive, disrupts normal operations
- Better solution: allow the number of buckets to be modified dynamically.



#### **Dynamic Hashing**

- Periodic rehashing
  - If the number of entries in a hash table becomes (say) 1.5 times the size of the hash table,
    - Create a new hash table of size (say) 2 times the size of the previous hash table
    - Rehash all entries to the new table
- Linear Hashing
  - Do rehashing in an incremental manner
- Extendable Hashing
  - Tailored to disk-based hashing, with buckets shared by multiple hash values
  - Doubling of # of entries in the hash table, without doubling # of buckets



# **Comparison of Ordered Indexing and Hashing**

- Cost of periodic re-organization
- Relative frequency of insertions and deletions
- Is it desirable to optimize average access time at the expense of worstcase access time?
- Expected type of queries:
  - Hashing is generally better at retrieving records having a specified value of the key.
  - If range queries are common, ordered indices are to be preferred
- In practice:
  - PostgreSQL supports hash indices but discourages use due to poor performance
  - Oracle supports static hash organization, but not hash indices
  - SQLServer supports only B+-trees



#### **Multiple-Key Access**

- Use multiple indices for certain types of queries.
- Example:

select ID

from instructor

where dept\_name = "Finance" and salary = 80000

- Possible strategies for processing queries using indices on single attributes:
  - 1. Use index on *dept\_name* to find instructors with department name Finance; test *salary* = 80000
  - Use index on salary to find instructors with a salary of \$80000; test dept\_name = "Finance".
  - Use dept\_name index to find pointers to all records pertaining to the "Finance" department. Similarly use index on salary. Take the intersection of both sets of pointers obtained.



## **Indices on Multiple Keys**

- Composite search keys are search keys containing more than one attribute
  - E.g., (dept\_name, salary)
- Lexicographic ordering:  $(a_1, a_2) < (b_1, b_2)$  if either
  - $a_1 < b_1$ , or
  - $a_1 = b_1$  and  $a_2 < b_2$



#### **Indices on Multiple Attributes**

Suppose we have an index on combined search-key (dept\_name, salary).

- With the where clause where dept\_name = "Finance" and salary = 80000 the index on (dept\_name, salary) can be used to fetch only records that satisfy both conditions.
  - Using separate indices is less efficient we may fetch many records (or pointers) that satisfy only one of the conditions.
- Can also efficiently handlewhere dept\_name = "Finance" and salary < 80000</li>
- But cannot efficiently handle where dept\_name < "Finance" and balance = 80000</p>
  - May fetch many records that satisfy the first but not the second condition



#### **Creation of Indices**

- Example
  create index takes\_pk on takes (ID,course\_ID, year, semester, section)
  drop index takes\_pk
- Most database systems allow specification of type of index, and clustering.
- Indices on primary key created automatically by all databases
  - Why?
- Some databases also create indices on foreign key attributes
  - Why might such an index be useful for this query:
    - $takes \bowtie \sigma_{name='Shankar'}$  (student)
- Indices can greatly speed up lookups, but impose cost on updates
  - Index tuning assistants/wizards supported on several databases to help choose indices, based on query and update workload



#### **Index Definition in SQL**

Create an index

E.g.,: **create index** *b-index* **on** *branch(branch\_name)* 

- Use create unique index to indirectly specify and enforce the condition that the search key is a candidate key.
  - Not really required if SQL unique integrity constraint is supported
- To drop an index

drop index <index-name>

 Most database systems allow specification of type of index, and clustering.



# **Spatial and Temporal Indices**



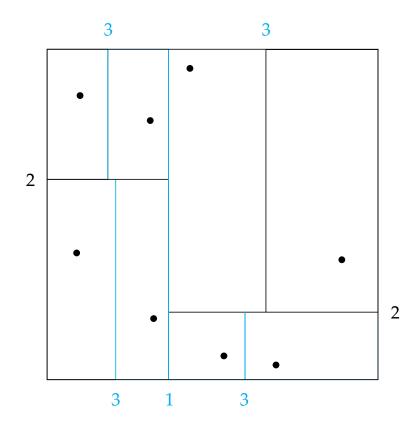
#### **Spatial Data**

- Databases can store data types such as lines, polygons, in addition to raster images
  - allows relational databases to store and retrieve spatial information
  - Queries can use spatial conditions (e.g. contains or overlaps).
  - queries can mix spatial and nonspatial conditions
- Nearest neighbor queries, given a point or an object, find the nearest object that satisfies given conditions.
- Range queries deal with spatial regions. e.g., ask for objects that lie partially or fully inside a specified region.
- Queries that compute intersections or unions of regions.
- Spatial join of two spatial relations with the location playing the role of join attribute.



## **Indexing of Spatial Data**

- k-d tree early structure used for indexing in multiple dimensions.
- Each level of a k-d tree partitions the space into two.
  - Choose one dimension for partitioning at the root level of the tree.
  - Choose another dimensions for partitioning in nodes at the next level and so on, cycling through the dimensions.
- In each node, approximately half of the points stored in the sub-tree fall on one side and half on the other.
- Partitioning stops when a node has less than a given number of points.

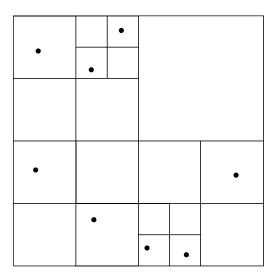


The k-d-B tree extends the k-d tree to allow multiple child nodes for each internal node; well-suited for secondary storage.



### **Division of Space by Quadtrees**

- Each node of a quadtree is associated with a rectangular region of space;
  the top node is associated with the entire target space.
- Each non-leaf nodes divides its region into four equal sized quadrants
  - correspondingly each such node has four child nodes corresponding to the four quadrants and so on
- Leaf nodes have between zero and some fixed maximum number of points (set to 1 in example).





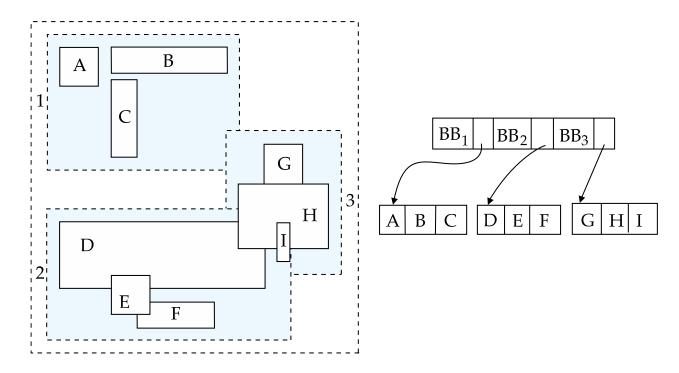
#### **R-Trees**

- R-trees are a N-dimensional extension of B+-trees, useful for indexing sets of rectangles and other polygons.
- Supported in many modern database systems, along with variants like R+ trees and R\*-trees.
- Basic idea: generalize the notion of a one-dimensional interval associated with each B+ -tree node to an N-dimensional interval, that is, an N-dimensional rectangle.
- Will consider only the two-dimensional case (N = 2)
  - generalization for N > 2 is straightforward, although R-trees work well only for relatively small N
- The bounding box of a node is a minimum sized rectangle that contains all the rectangles/polygons associated with the node
  - Bounding boxes of children of a node are allowed to overlap



#### **Example R-Tree**

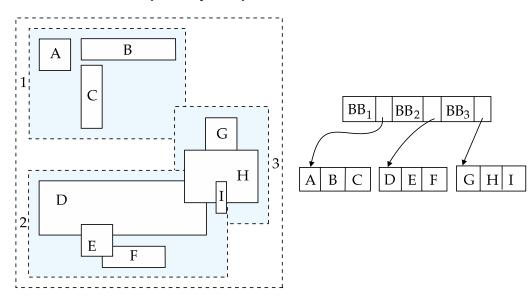
- A set of rectangles (solid line) and the bounding boxes (dashed line) of the nodes of an R-tree for the rectangles.
- The R-tree is shown on the right.





#### **Search in R-Trees**

- To find data items intersecting a given query point/region, do the following, starting from the root node:
  - If the node is a leaf node, output the data items whose keys intersect the given query point/region.
  - Else, for each child of the current node whose bounding box intersects the query point/region, recursively search the child
- Can be very inefficient in worst case since multiple paths may need to be searched, but works acceptably in practice.





### **Indexing Temporal Data**

- Temporal data refers to data that has an associated time period (interval)
  - Example: a temporal version of the course relation

| course_id | title             | dept_name  | credits | start      | end        |
|-----------|-------------------|------------|---------|------------|------------|
| BIO-101   | Intro. to Biology | Biology    | 4       | 1985-01-01 | 9999-12-31 |
| CS-201    | Intro. to C       | Comp. Sci. | 4       | 1985-01-01 | 1999-01-01 |
| CS-201    | Intro. to Java    | Comp. Sci. | 4       | 1999-01-01 | 2010-01-01 |
| CS-201    | Intro. to Python  | Comp. Sci. | 4       | 2010-01-01 | 9999-12-31 |

- Time interval has a start and end time
  - End time set to infinity (or large date such as 9999-12-31) if a tuple is currently valid and its validity end time is not currently known
- Query may ask for all tuples that are valid at a point in time or during a time interval
  - Index on valid time period speeds up this task



## **Indexing Temporal Data (Cont.)**

- To create a temporal index on attribute a:
  - Use spatial index, such as R-tree, with attribute a as one dimension, and time as another dimension
    - Valid time forms an interval in the time dimension
  - Tuples that are currently valid cause problems, since the value is infinite or very large
    - Solution: store all current tuples (with the end time as infinity) in a separate index, indexed on (a, start-time)
      - To find tuples valid at a point in time t in the current tuple index, search for tuples in the range (a, 0) to (a,t)
- Temporal index on primary key can help enforce the temporal primary key constraint

| course_id | title             | dept_name  | credits | start      | end        |
|-----------|-------------------|------------|---------|------------|------------|
| BIO-101   | Intro. to Biology | Biology    | 4       | 1985-01-01 | 9999-12-31 |
| CS-201    | Intro. to C       | Comp. Sci. | 4       | 1985-01-01 | 1999-01-01 |
| CS-201    | Intro. to Java    | Comp. Sci. | 4       | 1999-01-01 | 2010-01-01 |
| CS-201    | Intro. to Python  | Comp. Sci. | 4       | 2010-01-01 | 9999-12-31 |



# **End of Chapter 9**



#### **Example of Hash Index**

