Chapter 11: Query Optimization

Database System Concepts, $7^{\text {th }}$ Ed.

Outline

- Introduction
- Transformation of Relational Expressions
- Catalog Information for Cost Estimation
- Statistical Information for Cost Estimation
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Materialized views

Introduction

- Alternative ways of evaluating a given query
- Equivalent expressions
- Different algorithms for each operation

(a) Initial expression tree

(b) Transformed expression tree

Introduction (Cont.)

- An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

- Find out how to view query execution plans on your favorite database

Introduction (Cont.)

- Cost difference between evaluation plans for a query can be enormous
- E.g., seconds vs. days in some cases
- Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on the estimated cost

- Estimation of plan cost based on:
- Statistical information about relations. Examples:
- number of tuples, number of distinct values for an attribute
- Statistics estimation for intermediate results
- to compute costs of complex expressions
- Cost formulae for algorithms, computed using statistics

Viewing Query Evaluation Plans

- Most database support explain <query>
- Displays plan chosen by the query optimizer, along with cost estimates
- Some syntax variations between databases
- Oracle: explain plan for <query> followed by select * from table (dbms_xplan.display)
- SQL Server: set showplan_text on
- Some databases (e.g. PostgreSQL) support explain analyse <query>
- Shows actual runtime statistics found by running the query, in addition to showing the plan
- Some databases (e.g. PostgreSQL) show cost as f..l
- f is the cost of delivering the first tuple and / is the cost of delivering all results

Generating Equivalent Expressions

Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
- Note: order of tuples is irrelevant
- we don't care if they generate different results on databases that violate integrity constraints
- In SQL, inputs and outputs are multisets of tuples
- Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance.
- An equivalence rule says that expressions of two forms are equivalent
- Can replace expression of the first form with the second, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(\mathrm{E}) \equiv \sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(\mathrm{E})\right)
$$

2. Selection operations are commutative.

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(\mathrm{E})\right) \equiv \sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(\mathrm{E})\right)
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$
\begin{aligned}
& \prod_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\prod_{L_{n}}(\mathrm{E})\right) \ldots\right)\right) \quad \equiv \quad \prod_{\mathrm{L}_{1}}(\mathrm{E}) \\
& \text { where } L_{1} \subseteq L_{2} \ldots \subseteq L_{n}
\end{aligned}
$$

4. Selections can be combined with Cartesian products and theta joins.
a. $\sigma_{\theta}\left(E_{1} \times E_{2}\right) \equiv E_{1} \bowtie_{\theta} E_{2}$
b. $\sigma_{\theta_{1}}\left(E_{1} \bowtie_{\theta_{2}} E_{2}\right) \equiv E_{1} \bowtie_{\theta_{1} \wedge \theta_{2}} E_{2}$

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

$$
E_{1} \bowtie E_{2} \equiv E_{2} \bowtie E_{1}
$$

6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3} \quad \equiv \quad E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(b) Theta joins are associative in the following manner:

$$
\left(E_{1} \bowtie_{\theta_{1}} E_{2}\right) \bowtie_{\theta_{2} \wedge \theta_{3}} E_{3} \equiv E_{1} \bowtie_{\theta_{1} \wedge \theta_{3}}\left(E_{2} \bowtie_{\theta_{2}} E_{3}\right)
$$

where θ_{2} involves attributes from only E_{2} and E_{3}.

Pictorial Depiction of Equivalence Rules

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under the following two conditions:
(a) When all the attributes in θ_{0} involve only the attributes of one of the expressions $\left(E_{1}\right)$ being joined.

$$
\sigma_{\theta_{0}}\left(E_{1} \bowtie_{\theta} E_{2}\right) \quad \equiv \quad\left(\sigma_{\theta_{0}}\left(E_{1}\right)\right) \bowtie_{\theta} E_{2}
$$

(b) When θ_{1} involves only the attributes of E_{1} and θ_{2} involves only the attributes of E_{2}.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right) \quad \equiv \quad\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\sigma_{\theta_{2}}\left(E_{2}\right)\right)
$$

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as follows:
(a) if θ involves only attributes from $L_{1} \cup L_{2}$:
$\Pi_{L_{1} \cup L_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right) \equiv \Pi_{L_{1}}\left(E_{1}\right) \bowtie_{\theta} \Pi_{L_{2}}\left(E_{2}\right)$
(b) In general, consider a join $E_{1} \bowtie_{\theta} E_{2}$.

- Let L_{1} and L_{2} be sets of attributes from E_{1} and E_{2}, respectively.
- Let L_{3} be attributes of E_{1} that are involved in the join condition θ, but are not in $L_{1} \cup L_{2}$, and
- let L_{4} be attributes of E_{2} that are involved in the join condition θ, but are not in $L_{1} \cup L_{2}$.
$\Pi_{\mathrm{L}_{1} \cup \mathrm{~L}_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right) \equiv \Pi_{\mathrm{L}_{1} \cup \mathrm{~L}_{2}}\left(\Pi_{\mathrm{L}_{1} \cup \mathrm{~L}_{3}}\left(E_{1}\right) \bowtie_{\theta} \Pi_{\mathrm{L}_{2} \cup \mathrm{~L}_{4}}\left(E_{2}\right)\right)$

Similar equivalences hold for outer-join operations: \bowtie, \bowtie, and \lesssim

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

$$
\begin{aligned}
& E_{1} \cup E_{2} \equiv E_{2} \cup E_{1} \\
& E_{1} \cap E_{2} \equiv E_{2} \cap E_{1}
\end{aligned}
$$

(the set difference is not commutative).
10. Set union and intersection are associative.

$$
\begin{aligned}
& \left(E_{1} \cup E_{2}\right) \cup E_{3} \equiv E_{1} \cup\left(E_{2} \cup E_{3}\right) \\
& \left(E_{1} \cap E_{2}\right) \cap E_{3} \equiv E_{1} \cap\left(E_{2} \cap E_{3}\right)
\end{aligned}
$$

11. The selection operation distributes over \cup, \cap and - .
a. $\sigma_{\theta}\left(E_{1} \cup E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) \cup \sigma_{\theta}\left(E_{2}\right)$
b. $\sigma_{\theta}\left(E_{1} \cap E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) \cap \sigma_{\theta}\left(E_{2}\right)$
c. $\sigma_{\theta}\left(E_{1}-E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right)-\sigma_{\theta}\left(E_{2}\right)$
d. $\sigma_{\theta}\left(E_{1} \cap E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) \cap E_{2}$
e. $\sigma_{\theta}\left(E_{1}-E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right)-E_{2}$
preceding equivalence does not hold for \cup
12. The projection operation distributes over the union

$$
\Pi_{\mathrm{L}}\left(E_{1} \cup E_{2}\right) \equiv\left(\Pi_{\mathrm{L}}\left(E_{1}\right)\right) \cup\left(\Pi_{\mathrm{L}}\left(E_{2}\right)\right)
$$

Equivalence Rules (Cont.)

13. Selection distributes over aggregation as below

$$
\sigma_{\theta}\left({ }_{\mathrm{G}} \gamma_{\mathrm{A}}(E)\right) \equiv{ }_{\mathrm{G}} \gamma_{\mathrm{A}}\left(\sigma_{\theta}(E)\right)
$$

provided θ only involves attributes in G
14. a. Full outer-join is commutative:

$$
E_{1} \bowtie E_{2} \equiv E_{2} \bowtie E_{1}
$$

b. Left and right outer-join are not commutative, but:

$$
E_{1} \bowtie E_{2} \equiv E_{2} \bowtie E_{1}
$$

15. Selection distributes over left and right outer-joins as below, provided θ_{1} only involves attributes of E_{1}
a. $\sigma_{\theta_{1}}\left(E_{1} \bowtie_{\theta} E_{2}\right) \equiv\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right) \bowtie_{\theta} E_{2}$
b. $\sigma_{\theta_{1}}\left(E_{1} \bowtie ब_{\theta} E_{2}\right) \equiv E_{2} \bowtie_{\theta}\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right)$

Transformation Example: Pushing Selections

- Query: Find the names of all instructors in the Music department, along with the titles of the courses that they teach
- $\Pi_{\text {name, title }}\left(\sigma_{\text {dept_name }}=\right.$ Music'
(instructor \bowtie (teaches $\bowtie \Pi_{\text {course_id, title }}($ course))))
- Transformation using rule 7a.
- $\Pi_{\text {name, title }}\left(\left(\sigma_{\text {dept_name }}\right.\right.$ Music' ${ }^{\prime}$ (instructor) $) \bowtie$
(teaches $\bowtie \Pi_{\text {course_id, title }}($ course)))
- Performing the selection as early as possible reduces the size of the relation to be joined.

Multiple Transformations (Cont.)

(a) Initial expression tree

(b) Tree after multiple transformations

Join Ordering Example

- For all relations r_{1}, r_{2}, and r_{3},

$$
\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}=r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)
$$

(Join Associativity) \bowtie

- If $r_{2} \bowtie r_{3}$ is quite large and $r_{1} \bowtie r_{2}$ is small, we choose

$$
\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}
$$

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)

- Consider the expression

$$
\begin{array}{r}
\Pi_{\text {name, title }}\left(\sigma_{\text {dept_name }}=\text { 'Music" }(\text { instructor }) \bowtie \text { teaches }\right) \\
\left.\left.\left.\bowtie \Pi_{\text {course_id, title }}(\text { course })\right)\right)\right)
\end{array}
$$

- Could compute teaches $\bowtie \Pi_{\text {course_id, title }}$ (course) first, and join the result with

$$
\sigma_{\text {dept_name }}=\text { Music" } " \text { (instructor) }
$$

But the first join's result is likely to be a large relation.

- Only a small fraction of the university' s instructors are likely to be from the Music department
- it is better to compute

$$
\sigma_{\text {dept_name= "Music" }} \text { (instructor) } \bowtie \text { teaches }
$$

first.

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows:
- Repeat
- apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
- add newly generated expressions to the set of equivalent expressions
Until no new equivalent expressions are generated above
- The above approach is very expensive in space and time
- Two approaches
- Optimized plan generation based on transformation rules
- Special case approach for queries with only selections, projections, and joins

Implementing Transformation Based Optimization

- Space requirements reduced by sharing common sub-expressions:
- when E1 is generated from E2 by an equivalence rule, usually only the top level of the two are different, subtrees below are the same and can be shared using pointers
- E.g., when applying join commutativity

- Same sub-expression may get generated multiple times
- Detect duplicate sub-expressions and share one copy
- Time requirements are reduced by not generating all expressions
- Dynamic programming

Cost Estimation

- Cost of each operator computed as described earlier
- Need statistics on input relations
- E.g., number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
- Need to estimate statistics of expression results
- To do so, we require additional statistics
- E.g., the number of distinct values for an attribute
- More on cost estimation later

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
- choosing the cheapest algorithm for each operation independently may not yield the best overall algorithm. E.g.
- merge-join may be costlier than hash-join, but may provide a sorted output that reduces the cost for an outer level aggregation.
- Nested-loop join may provide an opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion.
2. Uses heuristics to choose a plan.

Cost-Based Optimization

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie \ldots \bowtie r_{n}$.
- There are $(2(n-1))!/(n-1)$! different join orders for the above expression. With $n=7$, the number is 665280, with $n=10$, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of
$\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$ is computed only once and stored for future use.

Left Deep Join Trees

- In left-deep join trees, the right-hand-side input for each join is a relation, not the result of an intermediate join.

(a) Left-deep join tree

(b) Non-left-deep join tree

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use heuristics to reduce the number of choices that must be made in a cost-based fashion.
- Heuristic optimization transforms the query tree by using a set of rules that typically (but not in all cases) improve execution performance:
- Perform selection early (reduces the number of tuples)
- Perform projection early (reduces the number of attributes)
- Perform the most restrictive selection and join operations (i.e., with the smallest result size) before other similar operations.
- Some systems use only heuristics, while others combine heuristics with partial cost-based optimization.

Structure of Query Optimizers (Cont.)

- Some query optimizers integrate heuristic selection and the generation of alternative access plans.
- Frequently used approach
- heuristic rewriting of nested block structure and aggregation
- followed by cost-based join-order optimization for each block
- Some optimizers (e.g. SQL Server) apply transformations to entire queries and do not depend on block structure
- Optimization cost budget to stop optimization early (if the cost of the plan is less than the cost of optimization)
- Plan caching to reuse previously computed plan if the query is resubmitted
- Even with different constants in the query
- Even with the use of heuristics, cost-based query optimization imposes a substantial overhead.
- But is worth it for expensive queries
- Optimizers often use simple heuristics for very cheap queries and perform exhaustive enumeration for more expensive queries

Statistics for Cost Estimation

Statistical Information for Cost Estimation

- n_{r} : number of tuples in a relation r.
- b_{r} : number of blocks containing tuples of r.
- I_{r} : size of a tuple of r.
- f_{r} : blocking factor of r-i.e., the number of tuples of r that fit into one block.
- $\quad V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$.
- If tuples of r are stored together physically in a file, then:

$$
b_{r}=\frac{n_{r}}{f_{r}}
$$

Histograms

- Histogram on attribute age of relation person

- Equi-width histograms

value

- Equi-depth histograms break up ranges such that each range has (approximately) the same number of tuples
- E.g. $(4,8,14,19)$
- Many databases also store n most-frequent values and their counts
- Histogram is built on remaining values only

Histograms (cont.)

- Histograms and other statistics are usually computed based on a random sample
- Statistics may be out of date
- Some databases require an analyze command to be executed to update statistics
- Others automatically recompute statistics
- e.g., when the number of tuples in a relation changes by some percentage

Selection Size Estimation

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r)$: number of records that will satisfy the selection
- Equality condition on a key attribute: size estimate =1
- $\sigma_{A \leq V}(r)$ (case of $\sigma_{A \geq V}(r)$ is symmetric)
- Let c denote the estimated number of tuples satisfying the condition.
- If $\min (A, r)$ and $\max (A, r)$ are available in catalog
- $C=0$ if $v<\min (A, r)$
- $\mathrm{C}=n_{r} \cdot \frac{v \min (A, r)}{\max (A, r) \min (A, r)}$
- If histograms are available, can refine the above estimate
- In the absence of statistical information c is assumed to be $n_{r} / 2$.

Size Estimation of Complex Selections

- The selectivity of a condition θ_{i} is the probability that a tuple in the relation r satisfies θ_{i}.
- If s_{i} is the number of satisfying tuples in r, the selectivity of θ_{i} is given by s_{i} / n_{r}.
- Conjunction: $\sigma_{\theta 1 \wedge \theta 2 \wedge . . \wedge \theta n}(r)$. Assuming independence, the estimate of the number of tuples in the result is:

$$
n_{r} \frac{S_{1} S_{2} \ldots S_{n}}{n_{r}^{n}}
$$

- Disjunction: $\sigma_{\theta 1 \vee} \theta_{2} \ldots \ldots \theta_{n}(r)$. Estimated number of tuples!

$$
n_{r} \quad 1 \quad\left(1 \quad \frac{s_{1}}{n_{r}}\right)\left(\begin{array}{ll}
1 & \frac{s_{2}}{n_{r}}
\end{array}\right) \quad \ldots \quad\left(1 \frac{s_{n}}{n_{r}}\right) \div
$$

- Negation: $\sigma_{\neg \theta}(r)$. Estimated number of tuples:

$$
n_{\mathrm{r}}-\operatorname{size}\left(\sigma_{\theta}(r)\right)
$$

Join Operation: Running Example

Running example:
student \bowtie takes
Catalog information for join examples:

- $n_{\text {student }}=5,000$.
- $f_{\text {student }}=50$, which implies that $b_{\text {student }}=5000 / 50=100$.
- $n_{\text {takes }}=10000$.
- $f_{\text {takes }}=25$, which implies that
$b_{\text {takes }}=10000 / 25=400$.
- $\quad V(I D$, takes $)=2500$, which implies that on average, each student who has taken a course has taken 4 courses.
- Attribute ID in takes is a foreign key referencing student.
- V(ID, student) $=5000$ (primary key!)

Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $n_{r} . n_{s}$ tuples; each tuple occupies $s_{r}+$ s_{s} bytes.
- If $R \cap S=\varnothing$, then $r \bowtie s$ is the same as $r \times s$.
- If $R \cap S$ is a key for R, then a tuple of s will join with at most one tuple from r
- therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s.
- If $R \cap S$ in S is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is exactly the same as the number of tuples in s.
- The case for $R \cap S$ being a foreign key referencing S is symmetric.
- In the example query student \bowtie takes, ID in takes is a foreign key referencing student
- hence, the result has exactly $n_{\text {takes }}$ tuples, which is 10000

Estimation of the Size of Joins (Cont.)

- If $R \cap S=\{A\}$ is not a key for R or S.

If we assume that every tuple t in R produces tuples in $R \bowtie S$, the number of tuples in $R \bowtie S$ is estimated to be:

$$
\frac{n_{r} \quad n_{s}}{V(A, s)}
$$

If the reverse is true, the estimate obtained will be:

$$
\frac{n_{r} \quad n_{s}}{V(A, r)}
$$

The lower of these two estimates is probably the more accurate one.

- Can improve on above if histograms are available
- Use a formula similar to the above, for each cell of histograms on the two relations

Size Estimation for Other Operations

- Projection: estimated size of $\Pi_{A}(r)=V(A, r)$
- Aggregation : estimated size of ${ }_{G} \gamma_{A}(r)=V(G, r)$
- Set operations
- For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
- E.g., $\sigma_{\theta 1}(r) \cup \sigma_{\theta 2}(r)$ can be rewritten as $\sigma_{\theta 1 \text { or }{ }_{\theta 2}(r)}$
- For operations on different relations:
- estimated size of $r \cup s=$ size of $r+$ size of s.
- estimated size of $r \cap s=$ minimum size of r and size of s.
- estimated size of $r-s=r$.
- All three estimates may be quite inaccurate, but provide upper bounds on the sizes.

Size Estimation (Cont.)

- Outer join:
- Estimated size of $r \bowtie s=$ size of $r \bowtie s+$ size of r
- Case of the right outer join is symmetric
- Estimated size of $r \bowtie s=$ size of $r \bowtie s+$ size of $r+$ size of s

Estimation of Number of Distinct Values

Selections: $\sigma_{\theta}(r)$

- If θ forces A to take a specified value: $V\left(A, \sigma_{\theta}(r)\right)=1$.
- e.g., $A=3$
- If θ forces A to take on one of a specified set of values:
$V\left(A, \sigma_{\theta}(r)\right)=$ number of specified values.
- (e.g., $(A=1 \vee A=3 \vee A=4)$),
- If the selection condition θ is of the form A op r
estimated $V\left(A, \sigma_{\theta}(r)\right)=V(A . r){ }^{*} s$
- where s is the selectivity of the selection.
- In all the other cases: use an approximate estimate of

$$
\min \left(V(A, r), n_{\sigma \theta(r)}\right)
$$

- More accurate estimate can be got using probability theory, but this one works fine generally

End of Chapter 11

