
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 11: Query Optimization

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan11.2Database System Concepts - 7th Edition

Outline

▪ Introduction 

▪ Transformation of Relational Expressions

▪ Catalog Information for Cost Estimation

▪ Statistical Information for Cost Estimation

▪ Cost-based optimization

▪ Dynamic Programming for Choosing Evaluation Plans

▪ Materialized views 
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Introduction

▪ Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation
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Introduction (Cont.)

▪ An evaluation plan defines exactly what algorithm is used for each 

operation, and how the execution of the operations is coordinated.

▪ Find out how to view query execution plans on your favorite database
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Introduction (Cont.)

▪ Cost difference between evaluation plans for a query can be enormous

• E.g., seconds vs. days in some cases

▪ Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules

2.   Annotate resultant expressions to get alternative query plans

3.   Choose the cheapest plan based on the estimated cost

▪ Estimation of plan cost based on:

• Statistical information about relations. Examples:

▪ number of tuples, number of distinct values for an attribute

• Statistics estimation for intermediate results

▪ to compute costs of complex expressions

• Cost formulae for algorithms, computed using statistics
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Viewing Query Evaluation Plans

▪ Most database support  explain <query>

• Displays plan chosen by the query optimizer, along with cost estimates

• Some syntax variations between databases

▪ Oracle:  explain plan for <query> followed by select * from table 

(dbms_xplan.display)

▪ SQL Server:  set showplan_text on

▪ Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in addition

to showing the plan

▪ Some databases (e.g. PostgreSQL) show cost as   f..l

• f is the cost of delivering the first tuple and l is the cost of delivering all 

results 
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Generating Equivalent Expressions
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Transformation of Relational Expressions

▪ Two relational algebra expressions are said to be equivalent if the two 

expressions generate the same set of tuples on every legal database 

instance

• Note: order of tuples is irrelevant

• we don’t care if they generate different results on databases that 

violate integrity constraints

▪ In SQL, inputs and outputs are multisets of tuples

• Two expressions in the multiset version of the relational algebra are 

said to be equivalent if the two expressions generate the same 

multiset of tuples on every legal database instance. 

▪ An equivalence rule says that expressions of two forms are equivalent

• Can replace expression of the first form with the second, or vice versa
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Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of 

individual selections.

σ1  2 
(E) ≡  σ1

(σ2 
(E))

2. Selection operations are commutative.

σ1
(σ2

(E)) ≡   σ2
(σ1

(E))

3. Only the last in a sequence of projection operations is needed, the others 

can be omitted.

 L1
( L2

(…( Ln
(E))…))     ≡      L1

(E)

where L1 ⊆ L2 … ⊆ Ln

4.    Selections can be combined with Cartesian products and theta joins.

a. σ (E1 x E2) ≡    E1 ⨝  E2

b. σ 1 
(E1 ⨝2

E2) ≡    E1 ⨝ 1∧2
E2
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Equivalence Rules (Cont.)

5.  Theta-join operations (and natural joins) are commutative.

E1 ⨝ E2 ≡    E2 ⨝ E1

6. (a) Natural join operations are associative:

(E1 ⨝ E2) ⨝ E3 ≡     E1 ⨝ (E2 ⨝ E3)

(b) Theta joins are associative in the following manner:

(E1 ⨝ 1
E2) ⨝ 2  3 

E3 ≡    E1 ⨝1  3
(E2 ⨝ 2

E3)

where 2 involves attributes from only E2 and E3.
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Pictorial Depiction of Equivalence Rules
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Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under the 

following two conditions:

(a)  When all the attributes in 0 involve only the attributes of one 

of the expressions (E1) being joined.

0 
(E1 ⨝ E2)      ≡    (0

(E1)) ⨝ E2

(b) When 1 involves only the attributes of E1 and 2 involves  

only the attributes of E2.

1  2
(E1 ⨝ E2)     ≡ (1

(E1))⨝ (2
(E2))
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8. The projection operation distributes over the theta join operation as follows:

(a) if  involves only attributes from L1  L2:

 L1  L2
(E1 ⨝ E2)     ≡      L1

(E1) ⨝  L2
(E2)

(b) In general, consider a join E1 ⨝ E2. 

• Let L1 and L2 be sets of attributes from E1 and E2, respectively.  

• Let L3 be attributes of E1 that are involved in the join condition , but 

are not in L1  L2, and

• let L4 be attributes of E2 that are involved in the join condition , but 

are not in L1  L2.

 L1  L2
(E1 ⨝ E2)     ≡     L1  L2

( L1  L3
(E1) ⨝  L2  L4

(E2))

Similar equivalences hold for outer-join operations: ⟕, ⟖, and ⟗

Equivalence Rules (Cont.)



©Silberschatz, Korth and Sudarshan11.14Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

9.  The set operations union and intersection are commutative

E1  E2     ≡   E2  E1 

E1  E2     ≡   E2  E1

(the set difference is not commutative).

10.  Set union and intersection are associative.

(E1  E2 )  E3    ≡ E1  (E2  E3)

(E1  E2 )  E3    ≡   E1  (E2  E3)

11.  The selection operation distributes over ,  and –. 

a.   (E1  E2)    ≡    (E1)  (E2)

b.   (E1  E2)    ≡  (E1)  (E2)

c.    (E1 – E2)    ≡    (E1) – (E2)

d.    (E1  E2)   ≡ (E1)  E2

e.    (E1 – E2)    ≡ (E1) – E2

preceding equivalence does not hold for 

12.The projection operation distributes over the union

L(E1  E2)     ≡ (L(E1))  (L(E2)) 
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Equivalence Rules (Cont.)

13. Selection distributes over aggregation as below

(G𝛾A(E))    ≡   G𝛾A((E)) 

provided  only involves attributes in G

14. a. Full outer-join is commutative:

E1 ⟗ E2     ≡   E2 ⟗ E1 

b. Left and right outer-join are not commutative, but:

E1 ⟕ E2     ≡   E2 ⟖ E1

15.  Selection distributes over left and right outer-joins as below, provided 1

only involves attributes of E1

a. 1
(E1 ⟕ E2)    ≡   (1

(E1)) ⟕ E2

b. 1
(E1 ⟖ E2)    ≡    E2 ⟕ (1

(E1))
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Transformation Example: Pushing Selections

▪ Query:  Find the names of all instructors in the Music department, along 

with the titles of the courses that they teach

• name, title(dept_name= ‘Music’

(instructor ⨝ (teaches ⨝ course_id, title (course))))

▪ Transformation using rule 7a.

• name, title((dept_name= ‘Music’(instructor)) ⨝
(teaches ⨝ course_id, title (course)))

▪ Performing the selection as early as possible reduces the size of the 

relation to be joined. 



©Silberschatz, Korth and Sudarshan11.18Database System Concepts - 7th Edition

Multiple Transformations (Cont.)



©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 7th Edition

Join Ordering Example

▪ For all relations r1, r2, and r3,

(r1 ⨝ r2) ⨝ r3  = r1 ⨝ (r2 ⨝ r3 )

(Join Associativity)⨝

▪ If r2 ⨝ r3 is quite large and r1 ⨝ r2 is small, we choose

(r1 ⨝ r2) ⨝ r3

so that we compute and store a smaller temporary relation.
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Join Ordering Example (Cont.)

▪ Consider the expression

name, title(dept_name= “Music” (instructor)⨝ teaches) 

⨝ course_id, title (course))))

▪ Could compute   teaches ⨝ course_id, title (course) first, and join the result 

with 

dept_name= “Music” (instructor)

But the first join’s result is likely to be a large relation.

▪ Only a small fraction of the university’s instructors are likely to be from 

the Music department

• it is better to compute

dept_name= “Music” (instructor) ⨝ teaches 

first.
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Enumeration of Equivalent Expressions

▪ Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression

▪ Can generate all equivalent expressions as follows: 

• Repeat

▪ apply all applicable equivalence  rules on every subexpression of 

every equivalent expression found so far

▪ add newly generated expressions to the set of equivalent 

expressions 

Until no new equivalent expressions are generated above

▪ The above approach is very expensive in space and time

• Two approaches

▪ Optimized plan generation based on transformation rules

▪ Special case approach for queries with only selections, projections, 

and joins



©Silberschatz, Korth and Sudarshan11.23Database System Concepts - 7th Edition

Implementing Transformation Based Optimization

▪ Space requirements reduced by sharing common sub-expressions:

• when E1 is generated from E2 by an equivalence rule, usually only the 

top level of the two are different, subtrees below are the same and can 

be shared using pointers

▪ E.g., when applying join commutativity

• Same sub-expression may get generated multiple times

▪ Detect duplicate sub-expressions and share one copy

▪ Time requirements are reduced by not generating all expressions

• Dynamic programming
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Cost Estimation

▪ Cost of each operator computed as described earlier

• Need statistics on input relations

▪ E.g., number of tuples, sizes of tuples

▪ Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

• To do so, we require additional statistics

▪ E.g., the number of distinct values for an attribute

▪ More on cost estimation later
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Choice of Evaluation Plans

▪ Must consider the interaction of evaluation techniques when choosing 

evaluation plans

• choosing the cheapest algorithm for each operation independently may 

not yield the best overall algorithm.  E.g.

▪ merge-join may be costlier than hash-join, but may provide a sorted 

output that reduces the cost for an outer level aggregation.

▪ Nested-loop join may provide an opportunity for pipelining

▪ Practical query optimizers incorporate elements of the following two broad 

approaches:

1. Search all the plans and choose the best plan in a 

cost-based fashion.

2. Uses heuristics to choose a plan.
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Cost-Based Optimization

▪ Consider finding the best join-order for r1 ⨝ r2 ⨝ . . .⨝ rn.

▪ There are (2(n – 1))!/(n – 1)! different join orders for the above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater than 

176 billion!

▪ No need to generate all the join orders.  Using dynamic programming, the 

least-cost join order for any subset of 

{r1, r2, . . . rn} is computed only once and stored for future use.  
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Left Deep Join Trees

▪ In left-deep join trees, the right-hand-side input for each join is a 

relation, not the result of an intermediate join.
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Heuristic Optimization

▪ Cost-based optimization is expensive, even with dynamic programming.

▪ Systems may use heuristics to reduce the number of choices that must be 

made in a cost-based fashion.

▪ Heuristic optimization transforms the query tree by using a set of rules that 

typically (but not in all cases) improve execution performance:

• Perform selection early (reduces the number of tuples)

• Perform projection early (reduces the number of attributes)

• Perform the most restrictive selection and join operations (i.e., with the 

smallest result size) before other similar operations.

• Some systems use only heuristics, while others combine heuristics with 

partial cost-based optimization.
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Structure of Query Optimizers (Cont.)

▪ Some query optimizers integrate heuristic selection and the generation of 

alternative access plans.

• Frequently used approach

▪ heuristic rewriting of nested block structure and aggregation

▪ followed by cost-based join-order optimization for each block

• Some optimizers (e.g. SQL Server) apply transformations to entire 

queries and do not depend on block structure

• Optimization cost budget to stop optimization early (if the cost of the 

plan is less than the cost of optimization)

• Plan caching to reuse previously computed plan if the query is 

resubmitted

▪ Even with different constants in the query  

▪ Even with the use of heuristics, cost-based query optimization imposes a 

substantial overhead.

• But is worth it for expensive queries

• Optimizers often use simple heuristics for very cheap queries and 

perform exhaustive enumeration for more expensive queries 
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Statistics for Cost Estimation
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Statistical Information for Cost Estimation

▪ nr:  number of tuples in a relation r.

▪ br: number of blocks containing tuples of r.

▪ lr: size of a tuple of r.

▪ fr: blocking factor of r — i.e., the number of tuples of r that fit into one block.

▪ V(A, r): number of distinct values that appear in r for attribute A; same as 

the size of A(r).

▪ If tuples of r are stored together physically in a file, then: 
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Histograms

▪ Histogram on attribute age of relation person

▪ Equi-width histograms

▪ Equi-depth histograms break up ranges such that each range has 

(approximately) the same number of tuples

• E.g. (4, 8, 14, 19) 

▪ Many databases also store n most-frequent values and their counts

• Histogram is built on remaining values only
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Histograms (cont.)

▪ Histograms and other statistics are usually computed based on a random  

sample

▪ Statistics may be out of date

• Some databases require an analyze command to be executed to 

update statistics

• Others automatically recompute statistics 

▪ e.g., when the number of tuples in a relation changes by some 

percentage
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▪ A=v(r)

• nr / V(A,r) : number of records that will satisfy the selection

• Equality condition on a key attribute: size estimate = 1

▪ AV(r) (case of A  V(r) is symmetric)

• Let c denote the estimated number of tuples satisfying the condition. 

• If min(A,r) and max(A,r) are available in catalog

▪ C = 0 if v < min(A,r)

▪ C =

• If histograms are available, can refine the above estimate

• In the absence of statistical information c is assumed to be nr / 2.

Selection Size Estimation

),min(),max(

),min(
.

rArA

rAv
nr

-

-
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Size Estimation of Complex Selections

▪ The selectivity of a condition i is the probability that a tuple in the relation 

r satisfies i . 

• If si is the number of satisfying tuples in r, the selectivity of i is given 

by si /nr.

▪ Conjunction:  1 2. . .  n (r).  Assuming independence, the estimate 

of the number of tuples in the result is:

▪ Disjunction:1 2 . . .  n (r). Estimated number of tuples:

▪ Negation:  (r). Estimated number of tuples:

nr – size((r))
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Join Operation:  Running Example

Running example: 
student ⨝ takes

Catalog information for join examples:

▪ nstudent = 5,000.

▪ fstudent = 50, which implies that 
bstudent =5000/50 = 100.

▪ ntakes = 10000.

▪ ftakes = 25, which implies that 
btakes = 10000/25 = 400.

▪ V(ID, takes) = 2500, which implies that on average, each student who has 
taken a course has taken 4 courses.

• Attribute ID in takes is a foreign key referencing student.

• V(ID, student) = 5000 (primary key!)
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Estimation of the Size of Joins

▪ The Cartesian product r x s contains nr .ns tuples; each tuple occupies sr + 

ss bytes.

▪ If R  S = , then r ⋈ s is the same as r  x s. 

▪ If R  S is a key for R, then a tuple of s will join with at most one tuple from 

r

• therefore, the number of tuples in r ⋈ s is no greater than the number 

of tuples in s.

▪ If R  S in S is a foreign key in S referencing R, then the number of tuples 

in r ⋈ s is exactly the same as the number of tuples in s.

▪ The case for R  S being a foreign key referencing S is symmetric.

▪ In the example query student ⋈ takes, ID in takes is a foreign key 

referencing student

• hence, the result has exactly ntakes tuples, which is 10000
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Estimation of the Size of Joins (Cont.)

▪ If R  S = {A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R    S, the number 

of tuples in R⨝ S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.

▪ Can improve on above if histograms are available

• Use a formula similar to the above, for each cell of histograms on the 

two relations 

),( sAV

nn sr *

),( rAV

nn sr *
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Size Estimation for Other Operations

▪ Projection:  estimated size of A(r)   =   V(A,r)

▪ Aggregation : estimated size of G𝛾A(r)   = V(G,r)

▪ Set operations

• For unions/intersections of selections on the same relation: rewrite 

and use size estimate for selections

▪ E.g., 1 (r)  2 (r)  can be rewritten as 1 or  2 (r)

• For operations on different relations:

▪ estimated size of r  s = size of r + size of s.   

▪ estimated size of r  s  = minimum size of r and size of s.

▪ estimated size of r – s = r.

▪ All three estimates may be quite inaccurate, but provide upper 

bounds on the sizes.
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Size Estimation (Cont.)

▪ Outer join:  

• Estimated size of r ⟕ s  = size of  r ⨝ s  + size of r

▪ Case of the right outer join is symmetric

• Estimated size of r ⟗ s  = size of r ⨝ s + size of r + size of s
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Estimation of Number of Distinct Values

Selections:  (r) 

▪ If  forces A to take a specified value: V(A, (r)) = 1.

▪ e.g., A = 3

▪ If  forces A to take on one of a specified set of values: 

V(A, (r)) = number of specified values.

▪ (e.g., (A = 1 V A = 3 V A = 4 )), 

▪ If the selection condition  is of the form A op r

estimated V(A, (r)) = V(A.r) * s

▪ where s is the selectivity of the selection.

▪ In all the other cases: use an approximate estimate of

min(V(A,r), n (r) )

• More accurate estimate can be got using probability theory, but this 

one works fine generally
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End of Chapter 11
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