Language Models

Philipp Koehn

5 September 2023

Language models

- Language models answer the question:

How likely is a string of English words good English?

- Help with reordering

$$
p_{\mathrm{LM}}(\text { the house is small })>p_{\mathrm{LM}}(\text { small the is house })
$$

- Help with word choice

$$
p_{\mathrm{LM}}(\mathrm{I} \text { am going home })>p_{\mathrm{LM}}(\mathrm{I} \text { am going house })
$$

N-Gram Language Models

- Given: a string of English words $W=w_{1}, w_{2}, w_{3}, \ldots, w_{n}$
- Question: what is $p(W)$?
- Sparse data: Many good English sentences will not have been seen before
\rightarrow Decomposing $p(W)$ using the chain rule:

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \ldots p\left(w_{n} \mid w_{1}, w_{2}, \ldots w_{n-1}\right)
$$

(not much gained yet, $p\left(w_{n} \mid w_{1}, w_{2}, \ldots w_{n-1}\right)$ is equally sparse)

Markov Chain

- Markov assumption:
- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
$\rightarrow k$ th order Markov model
- For instance 2-gram language model:

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \simeq p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{2}\right) \ldots p\left(w_{n} \mid w_{n-1}\right)
$$

- What is conditioned on, here w_{i-1} is called the history

Estimating N-Gram Probabilities

- Maximum likelihood estimation

$$
p\left(w_{2} \mid w_{1}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}\right)}{\operatorname{count}\left(w_{1}\right)}
$$

- Collect counts over a large text corpus
- Millions to billions of words are easy to get (trillions of English words available on the web)

Example: 3-Gram

- Counts for trigrams and estimated word probabilities

the green (total: 1748)			the red (total: 225)			the blue (total: 54)		
word	c.	prob.	word	c.	prob.	word	c.	prob.
paper	801	0.458	cross	123	0.547	box	16	0.296
group	640	0.367	tape	31	0.138	.	6	0.111
light	110	0.063	army	9	0.040	flag	6	0.111
party	27	0.015	card	7	0.031		3	0.056
ecu	21	0.012		5	0.022	angel	3	0.056

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
\rightarrow maximum likelihood probability is $\frac{123}{225}=0.547$.

How good is the LM?

- A good model assigns a text of real English W a high probability
- This can be also measured with cross entropy:

$$
H(W)=-\frac{1}{n} \log _{2} p\left(W_{1}^{n}\right)
$$

- Or, perplexity

$$
\operatorname{perplexity}(W)=2^{H(W)}
$$

Example: 3-Gram

prediction	p_{LM}	$-\log _{2} p_{\mathrm{LM}}$
$p_{\mathrm{LM}}(\mathrm{i} \mid</ \mathrm{s}><\mathrm{s}>)$	0.109	3.197
$p_{\mathrm{LM}}($ would $\mid<\mathrm{s}>\mathrm{i})$	0.144	2.791
$p_{\mathrm{LM}}($ like \mid i would $)$	0.489	1.031
$p_{\mathrm{LM}}($ to \mid would like $)$	0.905	0.144
$p_{\mathrm{LM}}($ commend \mid like to $)$	0.002	8.794
$p_{\mathrm{LM}}($ the \mid to commend $)$	0.472	1.084
$p_{\mathrm{LM}}($ rapporteur \mid commend the $)$	0.147	2.763
$p_{\mathrm{LM}}($ on \mid the rapporteur $)$	0.056	4.150
$p_{\mathrm{LM}}($ his \mid rapporteur on $)$	0.194	2.367
$p_{\mathrm{LM}}($ work \mid on his $)$	0.089	3.498
$p_{\mathrm{LM}}(. \mid$ his work $)$	0.290	1.785
$p_{\mathrm{LM}}(</ \mathrm{s}>\mid$ work $)$	0.99999	0.000014
	average	2.634

Comparison 1-4-Gram

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
rapporteur	10.840	7.319	2.763	2.350
on	6.765	4.140	4.150	1.862
his	10.678	7.316	2.367	1.978
work	9.993	4.816	3.498	2.394
.	4.896	3.020	1.785	1.510
$</ \mathrm{s}>$	4.828	0.005	0.000	0.000
average	8.051	4.072	2.634	2.251
perplexity	265.136	16.817	6.206	4.758

count smoothing

Unseen N-Grams

- We have seen i like to in our corpus
- We have never seen i like to smooth in our corpus
$\rightarrow p(\operatorname{smooth} \mid \mathrm{i}$ like to $)=0$
- Any sentence that includes i like to smooth will be assigned probability 0

Add-One Smoothing

- For all possible n-grams, add the count of one.

$$
p=\frac{c+1}{n+v}
$$

- $c=$ count of n-gram in corpus
- $n=$ count of history
- $v=$ vocabulary size
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
- 86,700 distinct words
- $86,700^{2}=7,516,890,000$ possible bigrams
- but only about $30,000,000$ words (and bigrams) in corpus

efficiency

Managing the Size of the Model

- Millions to billions of words are easy to get (trillions of English words available on the web)
- But: huge language models do not fit into RAM

Number of Unique N-Grams

Number of unique n-grams in Europarl corpus 29,501,088 tokens (words and punctuation)

Order	Unique n-grams	Singletons
unigram	86,700	$33,447(38.6 \%)$
bigram	$1,948,935$	$1,132,844(58.1 \%)$
trigram	$8,092,798$	$6,022,286(74.4 \%)$
4-gram	$15,303,847$	$13,081,621(85.5 \%)$
5-gram	$19,882,175$	$18,324,577(92.2 \%)$

\rightarrow remove singletons of higher order n-grams

Efficient Data Structures

- Need to store probabilities for
- the very large majority
- the very large number
- Both share history the very large

2-gram backoff

| large |
| :---: | :---: |
| boff:-0.470 |\quad| accept $p:-3.791$
 acceptable $p:-3.778$
 accession $p:-3.762$
 accidents $p:-3.806$
 accountancy $p:-3.416$
 accumulated $p:-3.885$
 accumulation $p:-3.895$
 action $p:-3.510$
 additional $p:-3.334$
 administration $p:-3.729$
 \ldots |
| :---: |

1-gram backoff
aa-afns p:-6.154
aachen $p:-5.734$ aaiun $p:-6.154$ aalborg $p:-6.154$ aarhus $p:-5.734$ aaron $p:-6.154$ aartsen $p:-6.154$ ab p:-5.734 abacha $p:-5.156$ aback p:-5.876
\rightarrow no need to store history twice
\rightarrow Trie

Reducing Vocabulary Size

- For instance: each number is treated as a separate token
- Replace them with a number token NUM
- but: we want our language model to prefer

$$
p_{\mathrm{LM}}(\mathrm{I} \text { pay } 950.00 \text { in May } 2007)>p_{\mathrm{LM}}(\mathrm{I} \text { pay } 2007 \text { in May } 950.00)
$$

- not possible with number token

$$
p_{\mathrm{LM}}(\mathrm{I} \text { pay NUM in May NUM })=p_{\mathrm{LM}}(\mathrm{I} \text { pay NUM in May NUM })
$$

- Replace each digit (with unique symbol, e.g., @ or 5), retain some distinctions

$$
p_{\mathrm{LM}}(\mathrm{I} \text { pay } 555.55 \text { in May } 5555)>p_{\mathrm{LM}}(\mathrm{I} \text { pay } 5555 \text { in May } 555.55)
$$

