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Language Models 1

)
=

e Modeling variants

— feed-forward neural network
— recurrent neural network

— long short term memory neural network

e May include input context
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Feed Forward Neural Language Model > @YV
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Recurrent Neural Language Model

yi the Output Word
b Output Word

Prediction

h Recurrent
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Predict the first word of a sentence
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Recurrent Neural Language Model

yi the  — house Output Word

Output Word
Prediction
Recurrent
State

Input Word
Embedding

Input Word

Predict the second word of a sentence

Re-use hidden state from first word prediction
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Recurrent Neural Language Model s
yi the  — house — is Output Word
Output Word
Sof X
Prediction
Recurrent
State
Input Word
Embedding
Input Word

Predict the third word of a sentence

... and so on
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Recurrent Neural Translation Model 7

e We predicted the words of a sentence

e Why not also predict their translations?
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Encoder-Decoder Model SN
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e Obviously madness

e Proposed by Google (Sutskever et al. 2014)
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What is Missing? 9

)
=

e Alignment of input words to output words

= Solution: attention mechanism
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neural translation model
with attention
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Input Encoding 1

Yi the — house — is  — big ——— . —_ </s> Output Word
utput Word
ti Softmax Softmax Softmax Softmax Softmax O p -
Prediction
Recurrent
hi RNN RNN RNN RNN RNN
State
_ Input Word
EXi | Embed Embed Embed Embed Embed Embed .
Embedding
X <s> >  the —» house > s —»  big > : Input Word

e Inspiration: recurrent neural network language model on the input side
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Hidden Language Model States 12

e This gives us the hidden states

e These encode left context for each word

e Same process in reverse: right context for each word
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Input Encoder 13
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Embedding
f f f f f f f
Xj <s> the house is big . </s> Input Word

e Input encoder: concatenate bidrectional RNN states

e Each word representation includes full left and right sentence context
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Encoder: Math 14

Right-to-Left
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Embedding
i 3
</s Input Word

Xj

e Input is sequence of words z;, mapped into embedding space F z;

e Bidirectional recurrent neural networks

;7 m,E:U]
%

%wath%)

e Various choices for the function f(): feed-forward layer, GRU, LSTM, ...
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Decoder 15

e We want to have a recurrent neural network predicting output words

| Softmax Softmax Softmax ..
Prediction

Si RNN RNN RNN RNN Decoder State
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Decoder 16

e We want to have a recurrent neural network predicting output words
Evi Output Word
Embeddings
t' CO i CO Iy CO
| Softmax Softmax Softmax .
Prediction
Si m RNN RNN RNN Decoder State

e We feed decisions on output words back into the decoder state
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Decoder 17

e We want to have a recurrent neural network predicting output words
Evi Output Word
Embeddings
t' )= ) [ G ety
i i Softmax i Softmax i Softmax e
Prediction

Decoder State

Ci Input Context

e We feed decisions on output words back into the decoder state
e Decoder state is also informed by the input context
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More Detail 18

e Decoder is also recurrent neural network
over sequence of hidden states s;

Ey Output Word
Embeddings s; = f(si—1, Fy_1,¢;)
yi Output Word @ Again, various choices for the function f():
, o) Output Word feed-forward layer, GRU, LSTM, ...
— Prediction 4 Output word y; is selected by computing a

s an )| Decoder State  VECHOr 1; (same size as vocabulary)

ti=W(Us;_1+VEy,_1+Cc)

(H

Input Context
then finding the highest value in vector ¢;

e If we normalize ¢;,, we can view it as a
probability distribution over words

o [y, is the embedding of the output word y;
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Attention 19

Si m RNN Decoder State

Input Context
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Encoder

e Given what we have generated so far (decoder hidden state)

e ... which words in the input should we pay attention to (encoder states)?
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Attention 20

Si m RNN Decoder State

Input Context
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Encoder

\. J

e Given: — the previous hidden state of the decoder s,_ 1

— the representation of input words h; = (717, h;)

e Predict an alignment probability a(s;_1, h;) to each input word j
(modeled with with a feed-forward neural network layer)
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Attention :
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e Normalize attention (softmax)
 explalsiihy))
> expla(si-1, hi))

Oéij
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Attention 22
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e Relevant input context: weigh input words according to attention: ¢; = » _; ;;h;
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e Use context to predict next hidden state and output word
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traimning
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Comparing Prediction to Correct Word =

yi - Output Word
- log ti[yi] Error
I Softmax Softmax Softmax .
Prediction

e Current model gives some probability ¢;|y;| to correct word y;

e We turn this into an error by computing cross-entropy: —log ¢;|v;]
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Unrolled Computation Graph 27
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Deeper Models 33

e Encoder and decoder are recurrent neural networks
e We can add additional layers for each step

e Recall shallow and deep language models

yt (Soﬂmax) (Softmax) yt Softmax) (Softmax) Output
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Shallow Deep Stacked Deep Transitional

Input Word
Embedding

e Adding residual connections (short-cuts through deep layers) help
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