Words and Morphology

Philipp Koehn

20 October 2020

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (*dog*)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (brown, quickly)
- Relationship between these have to specified
 - word order
 - morphology
 - function words

Unknown Words

• Ratio of unknown words in WMT 2013 test set:

Source language	Ratio unknown
Russian	2.0%
Czech	1.5%
German	1.2%
French	0.5%
English (to French)	0.5%

- Caveats:
 - corpus sizes differ
 - not clear which unknown words have known morphological variants

Large Vocabularies

- Zipf's law tells us that words in a language are very unevenly distributed.
 - large tail of rare words
 (e.g., new words retweeting, website, woke, lit)
 - large inventory of names, e.g., eBay, Yahoo, Microsoft
- Neural methods not well equipped to deal with such large vocabularies
 (ideal representations are continuous space vectors → word embeddings)
- Large vocabulary
 - large embedding matrices for input and output words
 - prediction and softmax over large number of words
- Computationally expensive, both in terms of memory and speed

Special Treatment for Rare Words

- Limit vocabulary to 20,000 to 80,000 words
- First idea
 - map other words to unknown word token (UNK)
 - model learns to map input UNK to output UNK
 - replace with translation from backup dictionary
- Not used anymore, except for numbers and units
 - numbers: English 540,000, Chinese 54 TENTHOUSAND, Indian 5.4 lakh
 - units: map 25cm to 10 inches

Some Causes for Large Vocabularies

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

- → compound splitting?
- Names

Netanyahu, Jones, Macron, Hoboken, ...

- \rightarrow transliteration?
- ⇒ Breaking up words into **subwords** may be a good idea

Byte Pair Encoding

• Start by breaking up words into characters

```
the _ fat _ cat _ is _ in _ the _ thin _ bag
```

Merge frequent pairs

```
t h\rightarrowth th e _ f a t _ c a t _ i s _ i n _ th e _ th i n _ b a g a t\rightarrowat th e _ f at _ c at _ i s _ i n _ th e _ th i n _ b a g i n\rightarrowin th e _ f at _ c at _ i s _ in _ th e _ th in _ b a g th e\rightarrowthe the _ f at _ c at _ i s _ in _ the _ th in _ b a g
```

- Each merge operation increases the vocabulary size
 - starting with the size of the character set (maybe 100 for Latin script)
 - stopping after, say, 50,000 operations

Byte Pair Encoding

Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly friendly . the two wanted to talk about the implementation of the international agreement and about Teheran 's destabil@@ ising activities in the Middle East . the meeting was also planned to cover the conflict with the Palestinians and the disputed two state solution . relations between Obama and Net@@ any@@ ahu have been stra@@ ined for years . Washington critic@@ ises the continuous building of settlements in Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the peace process. the relationship between the two has further deteriorated because of the deal that Obama negotiated on Iran 's atomic programme . in March , at the invitation of the Republic@@ ans , Net@@ any@@ ahu made a controversial speech to the US Congress , which was partly seen as an aff@@ ront to Obama . the speech had not been agreed with Obama , who had rejected a meeting with reference to the election that was at that time im@@ pending in Israel .

Subwords

- Byte pair encoding induces subwords
- But: only accidentally along linguistic concepts of morphology
 - morphological: critic@@ ises, im@@ pending
 - not morphological: aff@@ ront, Net@@ any@@ ahu
- Still: Similar to unsupervised morphology (frequent suffixes, etc.)

Sentence Piece

_Obama _receives _Net any ahu

_the _relationship _between _Obama _and _Net any ahu _is _not _exactly _friendly _. _the _two _wanted _to _talk _about _the _implementation _of _the _international _agreement _and _about _Teheran _'s _destabil ising _activities _in _the _Middle _East _. _the _meeting _was _also _planned _to _cover _the _conflict _with _the _Palestinians _and _the _disputed _two _state _solution _. _relations _between _Obama _and Net _any _ahu _have _been _stra ined _for _years _. _Washington _critic ises _the _continuous _building _of _settlements _in _Israel _and _acc uses _Net any ahu _of _a _lack _of _initiative _in _the _peace _process _. _the _relationship _between _the _two _has _further _deteriorated _because _of _the _deal _that _Obama _negotiated _on _Iran _'s _atomic _programme _. _in _March _, _at _the _invitation _of _the _Republic ans _, _Net any ahu _made _a _controversial _speech _to _the _US _Congress _, _which _was _partly _seen _as _an _aff ront _to _Obama _. _the _speech _had _not _been _agreed _with _Obama _, _who _had _rejected _a _meeting _with _reference _to _the _election _that _was _at _that _time _im pending _in _Israel .

character-based models

Character-Based Models

- Explicit word models that yield word embeddings
- Standard methods for frequent words
 - distribution of beautiful in the data
 - → embedding for beautiful
- Character-based models
 - create sequence embedding for character string b e a u t i f u l
 - training objective: match word embedding for beautiful
- Induce embeddings for unseen morphological variants
 - character string b e a u t i f u l l y
 - → embedding for beautifully
- Hope that this learns morphological principles

Character Sequence Models

- Same model as for words
- Tokens = single characters, incl. special space symbol
- But: generally poor performance
- With some refinements, use in output shown competitive

Character Based Word Models

- Word embeddings as before
- Compute word embeddings based on character sequence
- Typically, interpolated with traditional word embeddings

Recurrent Neural Networks

