Visual Document Understanding

Martin Geletka, 456576

Outline

Intro & Classical approaches
LayoutLM
LiT
TrOCR
Donut, SWIN Transformer

Intro & Classical approaches

Problems

- → OCR
- → Classification
- → NER
- → Example of use: Intelligent Back Office

Classical approaches

- → Classification
 - Connect outputs from independent NN for vision and text
 - Shallow model on top, simple confidence
- → NER
 - Preprocess the document with OCR
 - Use NER model only on text data (output from OCR)

LayoutLM

LayoutLM - Text Embeddings

- → Preprocessing
 - WordPiece tokenizer,
 - [CLS] at the beginning of the sequence
 - [SEP] at the end of each text segment
- → Final text embedding
 - Token embedding

$\mathbf{t}_i = \text{TokEmb}(w_i) + \text{PosEmb1D}(i) + \text{SegEmb}(s_i)$

- Token index
- Segment index

LayoutLM - Visual Embeddings

- → Use pretrained ResNeXt-FPN backbone
- → Pipeline
 - resized to 224 × 224
 - Fed to backbone
 - Output in size WxH

 $\mathbf{v}_{i} = \operatorname{Proj}(\operatorname{VisTokEmb}(I)_{i}) + \operatorname{PosEmb1D}(i) + \operatorname{SegEmb}([C])$

linear projection Ito obtain same dimensionality as text embeddings

LayoutLM - Layout Embedding

- → represent spatial layout information
- → Preprocessing:
 - normalize and discretize all coordinates to integer

 $\mathbf{l}_{i} = \text{Concat} \left(\text{PosEmb2D}_{x}(x_{\min}, x_{\max}, width), \\ \text{PosEmb2D}_{y}(y_{\min}, y_{\max}, height) \right)$

LayoutLM - pretraining tasks

- → Masked Visual-Language Modeling
 - mask some text tokens and corresponding image regions
 - The layout embedding remain
- → Text Image alignment
 - Covered visual parts and classified text to Covered vs UnCovered
- → Text-Image Matching
 - Classify if text and image are from same document

LayoutLM - Data

→ Training

- IIT-CDIP Test Collection
- 7M documents, 40M pages, 1.5 TB

→ Downstream tasks

- Entity extraction tasks FUNSD, CORD, SROIE, KleisterNDA
- Document classification: RVL-CDIP,
- QA: DocVQA

LayoutLM - Results

Model	Accuracy		
BERTBASE	89.81%		
UniLMv2 _{BASE}	90.06%		
BERTLARGE	89.92%		
UniLMv2 _{LARGE}	90.20%		
LayoutLM _{BASE} (w/ image)	94.42%		
LayoutLM _{LARGE} (w/ image)	94.43%		
LayoutLMv2 _{BASE}	95.25%		
LayoutLMv2 _{LARGE}	95.64%		
VGG-16 (Afzal et al., 2017)	90.97%		
Single model (Das et al., 2018)	91.11%		
Ensemble (Das et al., 2018)	92.21%		
InceptionResNetV2 (Szegedy et al., 2017)	92.63%		
LadderNet (Sarkhel and Nandi, 2019)	92.77%		
Single model (Dauphinee et al., 2019)	93.03%		
Ensemble (Dauphinee et al., 2019)	93.07%		

LayoutLM - Results

Model	Accuracy		
BERTBASE	89.81%		
UniLMv2 _{BASE}	90.06%		
BERTLARGE	89.92%		
UniLMv2 _{LARGE}	90.20%		
LayoutLM _{BASE} (w/ image)	94.42%		
LayoutLM _{LARGE} (w/ image)	94.43%		
LayoutLMv2 _{BASE}	95.25%		
LayoutLMv2 _{LARGE}	95.64%		
VGG-16 (Afzal et al., 2017)	90.97%		
Single model (Das et al., 2018)	91.11%		
Ensemble (Das et al., 2018)	92.21%		
InceptionResNetV2 (Szegedy et al., 2017)	92.63%		
LadderNet (Sarkhel and Nandi, 2019)	92.77%		
Single model (Dauphinee et al., 2019)	93.03%		
Ensemble (Dauphinee et al., 2019)	93.07%		

Table 3: Classification accuracy on the RVL-CDIP dataset

Model	Fine-tuning set	ANLS	
BERTBASE	train	0.6354	
UniLMv2 _{BASE}	train	0.7134	
BERTLARGE	train	0.6768	
$UniLMv2_{LARGE}$	train	0.7709	
LayoutLM _{BASE}	train	0.6979	
LayoutLMLARGE	train	0.7259	
LayoutLMv2 _{BASE}	train	0.7808	
LayoutLMv2 _{LARGE}	train	0.8348	
LayoutLMv2LABGE	train + dev	0.8529	
$LayoutLMv2_{LARGE} + QG$	train + dev	0.8672	
Top-1 (30 models ensemble) on DocVQA Leaderboard (until 2020-12-24)	-	0.8506	

Table 4: ANLS score on the DocVQA dataset, "QG" denotes the data augmentation with the question generation dataset.

TrOCR

- → Transformer based Optical Character Recognition
- → Encoder Decoder architecture
- → Uses pretrained models
 - Encoder Vision Transformer
 - Decoder Text Transformer

TrOCR

TrOCR - training

- → Pretrained on text recognition
 - Two stages
 - Synthetically generated from text
 - On printed, handwritten data
 - Data augmentation
 - random rotation (-10 to 10 degrees), Gaussian blurring, image dilation, image erosion, downscaling, underlining or keeping the original.

TrOCR - results

Model	Architecture	Training Data	External LM	CER	
TrOCRBASE	Transformer	Synthetic + IAM	No	3.42	
TrOCRLARGE	Transformer	Synthetic + IAM	No	2.89	
(Bluche and Messina, 2017)	GCRNN / CTC	Synthetic + IAM	Yes	3.2	
(Michael et al., 2019)	LSTM/LSTM w/Attn	IAM	No	4.87	
(Wang et al., 2020)	FCN / GRU	IAM	No	6.4	
(Kang et al., 2020)	Transformer w/ CNN	Synthetic + IAM	No	4.67	
(Diaz et al., 2021)	S-Attn / CTC	Internal + IAM	No	3.53	
(Diaz et al., 2021)	S-Attn / CTC	Internal + IAM	Yes	2.75	
(Diaz et al., 2021)	Transformer w/ CNN	Internal + IAM	No	2.96	

Table 4: Evaluation results (CER) on the IAM Handwriting dataset.

LiT

LiT - Locked-image Tuning

- \rightarrow Contrastive training
 - Goal:
 - representations of paired images and texts to be similar
 - representations of non-paired images and texts to be dissimilar
- → Locked image Tuning
 - Locked image/text pretrained embeddings and move the others

LiT - Results

→ Datasets

- CC12M
- YFCC100m

Dataset	Method	INet	INet-v2	INet-R	INet-A	ObjNet	ReaL	VTAB-N
te	CLIP [45]	76.2	70.1	88.9	77.2	72.3	-	-
iva	ALIGN [30]	76.4	70.1	92.2	75.8	-	-	-
P	LiT	84.5	78.7	93.9	79.4	81.1	88.0	72.6
ic	CLIP [45]	31.3	_	_	-	_	1	2
ldu	OpenCLIP [28]	34.8	30.0	-	-	-	-	-
Р	LiT	75.7	66.6	60.4	37.8	54.5	82.1	63.1
*	ResNet50 [25]	75.8	63.8	36.1	0.5	26.5	82.5	72.6

Donut

Donut - Idea

→ Document Understanding Transformer without OCR

Donut - architecture

3002-Kyoto Choco Mochi 14,000 x2 28,000 1001-Choco Bun 22,000 x1 ···· [END] 3002-Kyoto Choco Mochi[END_a][END] [START_class][receipt][END_class][END]

Donut - Encoder SWIN Transformer

- → Two main ideas
 - Hierarchical better represents small regions
 - Shifted windows

SynthDoG

- → Synthetic Document Generator
- → Pipeline
 - Background sample from ImageNet
 - Texture sampled from collected photos
 - Words sampled from Wikipedia
 - Patterns -rule based random patterns

Donut - pretraining

- → generated 1.2M synthetic document images
- → model is trained to read all the texts in the images in the reading order from top left to bottom right

Donut - Downstream tasks

- → Document Classification RVLCDIP
- → Document Parsing Indonesian Receipts, Japanese Business Cards, Korean Receipts
- → Document VQA

Donut - Results - Classification

	use OCR	#Params	Time(ms)	Accuracy (%)
BERTBASE	~	$110M + n/a^{\dagger}$	1392	89.81
RoBERTaBASE	~	$125M + n/a^{\dagger}$	1392	90.06
UniLMv2 _{BASE}	\checkmark	$125M + n/a^{\dagger}$	n/a	90.06
LayoutLM _{BASE} (w/ image)	\checkmark	$160M + n/a^{\dagger}$	n/a	94.42
LayoutLMv2 _{BASE}	\checkmark	$200M + n/a^{\dagger}$	1489	95.25
Donut (Proposed)		156M	791	94.50

[†] Parameters for OCR should be considered for the non-E2E models.

Donut - Results - Document Parsing

		Indonesian Receipt		Korean Receipt		Japanese Business Card		
	use OCR	Params	Time (s)	nTED	Time (s)	nTED	Time (s)	nTED
BERT-based Extractor*	\checkmark	$86M^{\dagger} + n/a^{\ddagger}$	0.89 + 0.54	11.3	1.14 + 1.74	21.67	0.83 + 0.50	9.56
SPADE (Hwang et al., 2021b)	\checkmark	$93M^{\dagger} + n/a^{\ddagger}$	3.32 + 0.54	10.0	6.56 + 1.74	21.65	3.34 + 0.50	9.77
Donut (Proposed)		156M [†]	1.07	8.45	1.99	5.87	1.39	3.70

Donut - Results - DocVQA

	OCR	Params [‡]	Time (ms)	ANLS
LoRRA	~	~223M	n/a	11.2
M4C	~	$\sim 91M$	n/a	39.1
BERTBASE	~	110M	n/a	57.4
CLOVA OCR	~	n/a	≥ 3226	32.96
UGLIFT v0.1	~	n/a	$\gtrsim 3226$	44.17
BERTBASE	~	$110M + n/a^{\dagger}$	1517	63.54
LayoutLMBASE	~	113M + n/a	1519	69.79
LayoutLMv2 _{BASE}	~	200M + n/a	1610	78.08
Donut		$\sim 207 M$	809	47.14
+ 10K imgs of trainset				53.14

Questions

References

- → LayoutLM v2 -> <u>https://arxiv.org/pdf/2012.14740.pdf</u>
- → TrOCR -> <u>https://arxiv.org/pdf/2109.10282.pdf</u>
- → LiT -> <u>https://arxiv.org/abs/2111.07991</u>
- → Donut -> <u>https://arxiv.org/pdf/2111.15664.pdf</u>
- → SWIN Transformer -> <u>https://arxiv.org/pdf/2103.14030.pdf</u>