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ARQMath Overview ARQMath Tasks

Task 1: Answer Retrieval
Given a posted question as a query, search all answer posts and return relevant
answer posts.
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ARQMath Overview ARQMath Tasks

Task 2: Formula Retrieval

Given a question post with an identified formula as a query, search all question and
answer posts and return relevant formulas with their posts.
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ARQMath Overview ARQMath Tasks

Topics (questions)

77 topics for Task 1
from various domains (real analysis, calculus, linear algebra, discrete mathematics, set
theory, number theory, etc.)
categorized as computation (26), concept (10), proof (41)
the difficulty level spanned from easy problems (32), medium (21) to hard (24)
dependency on surrounding text (13), formulas (32) or both (32)

45 topics for Task 2
mathematical formulae selected from the topics from Task 1
criteria: complexity, elements, and text dependence
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MIRMU Overview Methods

Methods
Math Representations

In our MIR systems, we used the following math representations:

LaTeX

Presentation MathML

Content MathML

Symbol Layout Tree

M-Terms

Operator Tree

Prefix

Infix
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MIRMU Overview Methods

Methods
Corpora, Relevance Judgements, and Evaluation Measures

For training, we used the following two corpora:

1. ArXMLiv (four different subsets), [2] and 2. Math StackExchange.

For validation, we used the following two sets of relevance judgements:

1. Automatic (param. opt., model sel.), and 2. Human-Annotated (perf. est.).

In our evaluation, we used the following two measures:

1. Normalized Discounted Cumulative
Gain Prime (nDCG’), [7] and

2. Spearman’s Correlation Coefficient (ρ).

For retrieval, we used a machine with with 32 CPUs and 252 GiB RAM.
For training embeddings, we used an NVIDIA GTX2080 Ti GPU with 11 GiB VRAM.
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MIRMU Overview Math Indexer and Searcher

Math Indexer and Searcher (MIaS)
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Historically the first MIR system deployed in a digital mathematical library. [9]
Uses TF-IDF with M-Terms extracted from CMML as a math representation.
Accuracy: nDCG’ 0.155, insignificantly below the Tangent-S baseline.
Speed: avg. 1.24 s/topic, min. 0.1 s/topic, max. 7.27 s/topic.
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MIRMU Overview Soft Cosine Measure

Soft Cosine Measure (SCM)

Uses joint fastText [1] word embeddings of text & math to measure relatedness.
Uses TF-IDF with the Prefix math representation and SCM [8, 4, 5] doc. similarity.
Uses automatic relevance judgements to optimize parameters of fastText and SCM.
Four different fastText models were trained:

1. Tiny (5 epochs, alternative submission)
2. Small (10 epochs, primary submission)

3. Medium (2 epochs on all corpora)
4. Large (10 epochs on all corpora)

Accuracy: nDCG’ 0.224 (small), insignificantly below the Approach0 baseline.
Speed: avg. 58.46 s/topic, min. 30.52 s/topic, max. 502.84 s/topic.
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MIRMU Overview Formula2Vec

Formula2Vec

Uses Doc2Vec DBOW [3] with the Prefix math representation and cosine doc. sim.
Uses the optimal parameters of fastText and RedHat defaults for Doc2Vec.
Four different Doc2Vec models were trained:

1. Tiny (5 epochs on no_problem ArXMLiv)
2. Small (10 epochs, alternative sub.)

3. Medium (2 epochs on all corpora)
4. Large (10 epochs on all corpora)

Accuracy: nDCG’ 0.050 (small), on par with DPRL and zbMath systems.
Speed: avg. 3.23 s/topic, min. 3.14 s/topic, max. 7.87 s/topic.
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MIRMU Overview CompuBERT

CompuBERT

Q: Can anyone explain ...
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Uses sBERT [6] with the LATEX math representation and the cosine similarity.
Uses our automatic relevance judgements to optimize the Triplet objective.
Stark difference in performance between automatic and human-annotated r.j.’s.
Accuracy: nDCG’ 0.009, not significantly better than zero.
Speed: avg. 3.43 s/topic, min. 3.2 s/topic, max. 3.67 s/topic.

D. Lupták · From ARQMath 2020 to 2021 · March 11, 2021 12 / 20



MIRMU Overview Ensemble

Ensemble

Interleaves the result lists of primary submissions: MIaS, SCM, and CompuBERT.
Uses a parameter-free ensembling algorithm that only uses ranks, not scores.
Results are ranked by median rank, then by frequency, and then interleaved.
Tie-breaking: More than 40% of all results were arbitrarily interleaved.
Accuracy: nDCG’ 0.238, best of our systems, significantly better than all but SCM.
The ensemble of all non-baseline primary submissions (0.419) best in competition.
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Tangent-L Overview Methodology

Methodology

Conversion – a “bag” of formulae and keywords
Searching – Tangent-L to query the indexed corpus (MSE question-answer pairs)
Re-ranking – Re-order the best matches by considering additional metadata

similarity
tags
votes
reputation
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Tangent-L Overview Results

Results

strong performance for topics that rely heavily on formulae
strong at Computation-type and Proof -type topics, but is particularly weak at
Concept-type topics

none of the Concept-type topics have a Formula-dependency

excels at all three levels of difficulty: Easy, Medium, and Hard
topics relying on formulae (Formula-dependency or Both-dependency)
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