
Mastering git
Lesson 1

Irina Gulina Tomas Tomecek

XKCD Source: https://explainxkcd.com/wiki/index.php/1597:_Git

https://explainxkcd.com/wiki/index.php/1597:_Git

Intro

Who are the lectors?

2

Who are the lectors?

Tomas Tomecek
Sr. Principal Software Engineer
Field: Automation, Python, Infrastructure, AI
Interests: Mushrooms obviously 😁, hiking,
gardening, snowboarding

ttomecek@redhat.com

tomas@tomecek.net

3

mailto:ttomecek@redhat.com

Who are the lectors?

Irina Gulina
Sr. Software Quality Engineer
Field: RHEL + SAP + Cloud
Interests: DIY, knitting, baking, via ferrata

igulina@redhat.com

4

How did it start?

▸ Irina: Workshop "Git troubles: How to find, fix and avoid them", DevConf.CZ 2019
▸ Irina: "OSSDev: Advanced Git", October 2019
▸ Irina: Talk "Git Etiquette: Best Practices or Mind your Git Manners", Open House Red Hat, April 2020
▸ Tomas + Irina: Workshop "If you do force push…. May the force stay with you", DevConf.CZ 2020
▸ Tomas + Irina: “OSSDev: Advanced Git”, April 2021
▸ Tomas + Irina: “OSSDev: Mind your Git manners”, March 2022
▸ Tomas + Irina: “Mastering Git”, 6 weeks course in MUNI, winter 2022

How did it start?

5

All octocats illustrations come from: https://octodex.github.com/

https://octodex.github.com/

Congrats

2nd iteration

Git is easy to use, if you know a few basic concepts

Focus on practical application

These slides are NOT study materials (explained later)

We don’t know MS Windows nor MacOS (containers/VMs)

In 6 classes you’ll learn the essentials so you can be productive

Tell us what you want to learn about

Homeworks: 5 + bonus task (1st class doesn’t have a homework. Yupeee!)
To pass the course: complete all 5HW, or 4HW + bonus

Congratulations!

6

About the course

Class objective

7

About the course

Lesson 1 - Introduction of this course, organization, motivation, basics, commits

Lesson 2 - How does branching work in git

Lesson 3 - Working as a team with a git repository

Lesson 4 - Fixing mistakes

Lesson 5 - Git Etiquette

Lesson 6 - Git features and common open source git workflow

About this course

8

Today’s class

▸ Version Control and why should you care?
▸ Installing Git.
▸ The basics of Git Workflow. Cloning Repositories.
▸ Index.
▸ Art of commits.
▸ HTTPs and SSH.

▸ Lab: Installing Git. Configuring Git for local repositories. Securing your Git repo with SSH keys.
Creating local repositories, adding files locally.

▸ Bonus: How to write a good README for your project.

Today’s class

9

Distributed version control system for managing source code, i.e. it’s a system that provides three
important capabilities:

▸ Reversibility
▸ Concurrency
▸ Annotation

About git

What is git?

10

Version control system is a system for managing the source code providing three important
capabilities:

▸ Reversibility - the ability to back up to a saved, known-good state when you discover that
some modification you did was a mistake or a bad idea.

▸ Concurrency - the ability to have many people modifying the same collection of code or
documents knowing that conflicting modifications can be detected and resolved.

▸ Annotation - attaching explanatory comments about the intention behind each change to
it and a record of who was responsible for each change.

About git

What is VCS?

11

▸ Keep track of code history
▸ Collaborate on code as a team
▸ See who made which changes
▸ RECOVER

VCS

What problem does VCS solve?

12

VCS

Eric Raymond’s “Understanding Version-Control Systems”

History

13

Generation Networking Operations Concurrency Examples

1st None (Local) One file at a time Locks RCS, SCCS

2nd Centralized Multi-file Merge before
commit

CVS, SourceSafe,
Subversion,
Team Foundation Server

3rd Distributed Changesets Commit before
merge

Bazaar,
Git,
Mercurial

http://www.catb.org/~esr/writings/version-control/version-control.html

VCS

14

A

C

B

15

VCS

16

Before Version Control

VCS

17

Before Version Control

¯_(ツ)_/¯

VCS

Reference: https://en.wikipedia.org/wiki/Punched_tape

This 1959 IBM 1620 relied on paper
tape to store data and programs

18

Before Version Control

https://en.wikipedia.org/wiki/Punched_tape

VCS

Reference https://www.reddit.com/r/ProgrammerHumor/comments/psqlij/chad_programmer/

19

With VCS

VCS

Midjourney prompt: “a picture of women sitting in front of computer and collaborating on a software project”

20

With git

About git

man 1 git

NAME

 git - the stupid content tracker

DESCRIPTION

 Git is a fast, scalable, distributed revision control system with an

unusually rich command set that provides both high-level operations

and full access to internals.

21

Source: https://octodex.github.com/

How old is git?

22

▸ 11 August 1995

▸ 22 December 1999

▸ 14 April 2001

▸ 7 April 2005

▸ 13 June 2011

▸ 5 February 2016

Source: https://octodex.github.com/

How old is git?

23

▸ 11 August 1995

▸ 22 December 1999

▸ 14 April 2001

▸ 7 April 2005

▸ 13 June 2011

▸ 5 February 2016

What is git?

24

Snapshots, not differences

B

A

25

Git workflow

Git workflow

Remote

26

Git workflow

What happens locally?

Remote

Install git

$ $package_manager $install_command git

E.g: dnf install git

27

Install git locally (Linux)

Install git

https://gitforwindows.org/

28

On Windows

$ brew install git
$ sudo port install git
Or a binary package shipped with Xcode

On Mac

git Setup

29

git config

git Setup

Sets conf variables determining git behavior

▸ System
▸ Global
▸ Local

30

git config

git Setup

Sets conf variables determining git behavior

▸ System - all users and all repositories
▸ Global - current user and their repositories
▸ Local - specific repository

31

git config

git Setup

A System
B Global
C Local

32

git config

1. .git/config

2. [path]/etc/gitconfig

3. ~/.gitconfig or

~/.config/git/config

git Setup

▸ System - all users and all repositories

[path]/etc/gitconfig

▸ Global - current user and their repositories

~/.gitconfig or ~/.config/git/config

▸ Local - specific repository

.git/config
33

git config

git Setup

Configure git with config command or directly editing
the conf file.

● Identity
● Editor
● Commit
● Default branch name
● Merge tools
● Colored outputs (formatting and whitespace)
● Aliases34

$ git config

git Setup

Configure git with config command or directly editing the
conf file.

$ git config –-list <--show-origin> <--system|global|local>
$ git config --global user.name "Mary Jane"
$ git config --global user.email mjane@example.com
$ git config --global init.defaultBranch main

$ git config --global --unset user.name35

$ git config

mailto:mjane@example.com

git Setup

Configure git with config command or directly editing
the conf file.

$ git config core.editor

$ vi ~/.gitconfig

36

$ git config

git Setup

If one git conf variable defined multiple times, which
command will show the final say? For example, for a
case of core.editor?

37

$ git config - Tricky question

git Setup

If one git conf variable defined multiple times, which
command will show the final say? For example, for a
case of core.editor?

$ git config –-show-origin core.editor

38

$ git config - Tricky question

HELP

▸ Google
▸ Stackoverflow
▸ $ git <verb> --help and git help <verb>, e.g.

･ $ git help config
･ $ git config –-help

▸ $ man git
▸ $ man git-<verb>, e.g. $ man git-config
▸ User manual: file:///usr/share/doc/git/user-manual.html
▸ Pro Git Book by Scott Chacon and Ben Straub:

 https://git-scm.com/book/en/v2

Documentation

39

XKCD Source: https://explainxkcd.com/wiki/index.php/1597:_Git

https://git-scm.com/book/en/v2
https://explainxkcd.com/wiki/index.php/1597:_Git

Repository

▸ Create a new git repository locally
▸ Clone an existing repository

40

Git repository

Local repository

$ mkdir my_first_git_project

$ cd my_first_git_project

$ git init

$ git init <directory>
41

Create a local git repository

git init

▸ convert an existing, unversioned project to a Git
repository

▸ initialize a new, empty repository

creates a .git subdirectory in the current working directory
with metadata

42

git init

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

43

Record changes to the repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

44

Record changes to the repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

git status

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$ git status <-s>

45

What does this command do?

Create a file

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$ echo ‘Mastering Git. First Lecture.’ >
README.md

46

Create file

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

47

$ echo ‘Mastering Git. First Lecture’ > README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

48

$ git add README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

49

$ git commit -m “Initial commit”

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

50

$ echo $'\nThis is a new line' >> README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Local Repository

51

Local workflow

Reference: https://stackoverflow.com/a/3690796/909579

Art of commit

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$ echo ‘Mastering Git. First Lecture’ > README.md

$ git status

$ git add README.md

$ git status

$ git commit -m “Initial commit”
52

First commit

53

Commit ID

$ git commit -m 'init commit'

[main c6b75cd] init commit

<...>
$ openssl zlib -d <
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef -

54

Commit ID = SHA-1 hash

Commit ID

$ openssl zlib -d <
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef -

▸ Full content
▸ The ID of the previous commit or its merge
▸ Commit and author date
▸ Committer and author’s name and email addresses
▸ Log message

55

Commit ID content

Commit ID

$ openssl zlib -d <
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef -
commit c6b75cd8d61e5be49fa4f23ee2025fed952e0aef
parent 6294ij1k53w43uf2fd94168ac410eca1e98 er34q
Author Irina Gulina <igulina@redhat.com> 1659644787 -0700
committer Irina Gulina<igulina2redhat.com> 1659644787 -0700

feature: my awesome feature

56

Commit ID content

57

Git workflow

What happens locally?

Remote

58

Git workflow

Git workflow

Remote

Commit

What VCS hosting
platforms do you know?

59

git Setup

● Create a new repository on GitHub (remote origin)
● Add remote origin locally
● Push the changes to remote origin

60

Origin + Local

git Setup

● Create a new repository on GitHub (remote origin)
● Add remote origin locally

･ $ git remote add origin
git@github.com:<userID>/<repo_name>.git

● Push the changes to remote origin
$ git branch -M main
$ git push -u origin main

61

Origin + Local

git clone

$ exit from the previous repository (cd ..)

$ git clone https://github.com/libgit2/pygit2

62

Clone someone’s git repository

https://github.com/libgit2/pygit2

clone vs git init

git clone is dependent on git init

63

Clone vs git init

clone vs git init

Do it yourself, connect locally cloned repo

with its origin remote version…

64

Local + Origin remote

HTTPS or SSH

$ git rm <file_name>

$ git mv <file_name>

65

Delete and move files

Stage changes

$ git add --all

$ git add -A

$ git add .

66

Add files

Stage changes

$ git commit -m 'repo cleanup'

[main c6b75cd] repo cleanup

<...>

 delete mode 100644 foo

 rename myfile.txt => roles/myfile.txt (100%)
67

Add files

HTTPS or SSH

HTTPS or SSH?

68

git clone

$ git clone git@github.com:libgit2/pygit2.git

69

Clone someone’s git repository

mailto:git@github.com

HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

▸ Both are communication protocols.
▸ Both work for providing a reliable and secure connection
▸ Encrypted

70

HTTPS or SSH?

HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

▸ Smart - HTTPS
▸ username/password authentication
▸ Pros and Cons

● Fast, efficient, firewalled approved
● Writing username/password for authentication

71

HTTPS

HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

● Smarter
● Private key-based authentication
● Pros and Cons

i. Fast, efficient, firewall approved
ii. One-time association: your key in a git forge
iii. Auth is mandatory

72

SSH

Commit

Do NOT use
git:// and http://

73

HTTPS or SSH

● gitlab.com account
● SSH key is in your account
● class repo is forked
● We have a UCO - GitLab mapping

i. https://gitlab.com/redhat/research/mastering-gi
t/-/issues/2

ii. https://gitlab.com/redhat/research/mastering-gi
t/-/issues/3

74

No homework but requirements:

https://gitlab.com/redhat/research/mastering-git/-/issues/2
https://gitlab.com/redhat/research/mastering-git/-/issues/2
https://gitlab.com/redhat/research/mastering-git/-/issues/3
https://gitlab.com/redhat/research/mastering-git/-/issues/3

Commit

LAB

75

76

Bonus

README

How cool is Your
README?

77

README

Detailed description of a git project

▸ What is the project about
▸ What are the user cases
▸ How it is organized
▸ How to install and use it

… and more

78

What is README?

HTTPS or SSH

● the first impression about your project

● improve engagement with the project

● help others get involved

79

Why is README important?

HTTPS or SSH

● It should exist!

● No unique guide.

● Fairly brief but detailed.

● Answer what, why, and the how of the project.
✓ TItle, description, demo, table of contents (optional), how to install and

run the project, how to use the project - examples, user/pass
requirements, credits, references, license (ref), badges (optional), howto
contribute and project organization, TESTS, feedback, buy_me_coffee…

80

How does a good README look?

HTTPS or SSH

● Check out big popular projects. Use templates and generators, e.g.:

https://github.com/kefranabg/readme-md-generator

● Located at the top level of the project directory

● Keep it up-to-date

● Peek a language

● Format and structure it

81

How does a good README look?

https://github.com/kefranabg/readme-md-generator

THE END

Questions?

82

THE END

We have Questions!

83

THE END

THANK YOU!

84

