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Intro

Who are the lectors?
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Who are the lectors?

Tomas Tomecek
Sr. Principal Software Engineer
Field: Automation, Python, Infrastructure, AI
Interests: Mushrooms obviously 😁, hiking, 
gardening, snowboarding

ttomecek@redhat.com

tomas@tomecek.net
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Who are the lectors?

Irina Gulina
Sr. Software Quality Engineer
Field: RHEL + SAP + Cloud
Interests: DIY, knitting, baking, via ferrata

igulina@redhat.com
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How did it start?

▸ Irina: Workshop "Git troubles: How to find, fix and avoid them", DevConf.CZ 2019 
▸ Irina: "OSSDev: Advanced Git", October 2019
▸ Irina: Talk "Git Etiquette: Best Practices or Mind your Git Manners", Open House Red Hat, April 2020 
▸ Tomas + Irina: Workshop "If you do force push…. May the force stay with you", DevConf.CZ 2020
▸ Tomas + Irina: “OSSDev: Advanced Git”, April 2021
▸ Tomas + Irina: “OSSDev: Mind your Git manners”, March 2022
▸ Tomas + Irina: “Mastering Git”, 6 weeks course in MUNI, winter 2022

How did it start?
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All octocats illustrations come from: https://octodex.github.com/

https://octodex.github.com/


Congrats

2nd iteration

Git is easy to use, if you know a few basic concepts

Focus on practical application

These slides are NOT study materials (explained later)

We don’t know MS Windows nor MacOS (containers/VMs)

In 6 classes you’ll learn the essentials so you can be productive

Tell us what you want to learn about

Homeworks: 5 + bonus task (1st class doesn’t have a homework. Yupeee!)
To pass the course: complete all 5HW, or 4HW + bonus

Congratulations!
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About the course

Class objective
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About the course

Lesson 1 -  Introduction of this course, organization, motivation, basics, commits

Lesson 2 - How does branching work in git

Lesson 3 - Working as a team with a git repository

Lesson 4 - Fixing mistakes

Lesson 5 - Git Etiquette

Lesson 6 - Git features and common open source git workflow

About this course
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Today’s class

▸ Version Control and why should you care?
▸ Installing Git.
▸ The basics of Git Workflow. Cloning Repositories.
▸ Index.
▸ Art of commits.
▸ HTTPs and SSH.

▸ Lab: Installing Git. Configuring Git for local repositories. Securing your Git repo with SSH keys. 
Creating local repositories, adding files locally.

▸ Bonus: How to write a good README for your project.

Today’s class
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Distributed version control system for managing source code, i.e. it’s a system that provides three 
important capabilities:

▸ Reversibility
▸ Concurrency
▸ Annotation

About git

What is git?
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Version control system  is a system for managing the source code providing three important 
capabilities:

▸ Reversibility - the ability to back up to a saved, known-good state when you discover that 
some modification you did was a mistake or a bad idea.

▸ Concurrency - the ability to have many people modifying the same collection of code or 
documents knowing that conflicting modifications can be detected and resolved.

▸ Annotation -  attaching explanatory comments about the intention behind each change to 
it and a record of who was responsible for each change.

About git

What is VCS?
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▸ Keep track of code history
▸ Collaborate on code as a team
▸ See who made which changes
▸ RECOVER

VCS

What problem does VCS solve?
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VCS

Eric Raymond’s “Understanding Version-Control Systems”

History
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Generation Networking Operations Concurrency Examples

1st None (Local) One file at a time Locks RCS, SCCS

2nd Centralized Multi-file Merge before 
commit

CVS, SourceSafe,
Subversion,
Team Foundation Server

3rd Distributed Changesets Commit before 
merge

Bazaar,
Git,
Mercurial

http://www.catb.org/~esr/writings/version-control/version-control.html


VCS
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A

C

B
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VCS
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Before Version Control



VCS
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Before Version Control

¯\_(ツ)_/¯



VCS

Reference: https://en.wikipedia.org/wiki/Punched_tape

This 1959 IBM 1620 relied on paper 
tape to store data and programs
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Before Version Control

https://en.wikipedia.org/wiki/Punched_tape


VCS

Reference https://www.reddit.com/r/ProgrammerHumor/comments/psqlij/chad_programmer/
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With VCS



VCS

Midjourney prompt: “a picture of women sitting in front of computer and collaborating on a software project”
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With git



About git

man 1 git

NAME

       git - the stupid content tracker

DESCRIPTION

       Git is a fast, scalable, distributed revision control system with an 

unusually rich command set that provides both high-level operations 

and full access to internals.
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Source: https://octodex.github.com/

How old is git?
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▸ 11 August 1995

▸ 22 December 1999

▸ 14 April 2001

▸ 7 April 2005

▸ 13 June 2011

▸ 5 February 2016



Source: https://octodex.github.com/

How old is git?
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▸ 11 August 1995

▸ 22 December 1999

▸ 14 April 2001

▸ 7 April 2005

▸ 13 June 2011

▸ 5 February 2016



What is git?
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Snapshots, not differences

B

A
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Git workflow

Git workflow

Remote
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Git workflow

What happens locally?

Remote



Install git

$ $package_manager $install_command git

E.g: dnf install git
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Install git locally (Linux)



Install git

https://gitforwindows.org/

28

On Windows

$ brew install git
$ sudo port install git
Or a binary package shipped with Xcode

On Mac



git Setup
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git config



git Setup

Sets conf variables determining git behavior

▸ System
▸ Global
▸ Local
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git config



git Setup

Sets conf variables determining git behavior

▸ System - all users and all repositories
▸ Global - current user and their repositories
▸ Local - specific repository
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git config



git Setup

A System
B Global 
C Local
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git config

1. .git/config

2. [path]/etc/gitconfig

3. ~/.gitconfig or 

~/.config/git/config



git Setup

▸ System - all users and all repositories

[path]/etc/gitconfig 

▸ Global - current user and their repositories

~/.gitconfig or ~/.config/git/config

▸ Local - specific repository

.git/config
33

git config



git Setup

Configure git with config command or directly editing 
the conf file.

● Identity
● Editor
● Commit
● Default branch name
● Merge tools
● Colored outputs (formatting and whitespace)
● Aliases34

$ git config



git Setup

Configure git with config command or directly editing the 
conf file.

$ git config –-list <--show-origin> <--system|global|local>
$ git config --global user.name "Mary Jane"
$ git config --global user.email mjane@example.com
$ git config --global init.defaultBranch main

$ git config --global --unset user.name35

$ git config

mailto:mjane@example.com


git Setup

Configure git with config command or directly editing 
the conf file.

$ git config core.editor

$ vi ~/.gitconfig

36

$ git config



git Setup

If one git conf variable defined multiple times, which 
command will show the final say? For example, for a 
case of core.editor?
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$ git config - Tricky question



git Setup

If one git conf variable defined multiple times, which 
command will show the final say? For example, for a 
case of core.editor?

$ git config –-show-origin core.editor
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$ git config - Tricky question



HELP

▸ Google
▸ Stackoverflow
▸ $ git <verb> --help and git help <verb>, e.g.

･ $ git help config
･ $ git config –-help

▸ $ man git
▸ $ man git-<verb>, e.g. $ man git-config
▸ User manual: file:///usr/share/doc/git/user-manual.html
▸ Pro Git Book by Scott Chacon and Ben Straub:

 https://git-scm.com/book/en/v2

Documentation
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XKCD Source: https://explainxkcd.com/wiki/index.php/1597:_Git

https://git-scm.com/book/en/v2
https://explainxkcd.com/wiki/index.php/1597:_Git


Repository

▸ Create a new git repository locally
▸ Clone an existing repository
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Git repository



Local  repository

$ mkdir my_first_git_project

$ cd my_first_git_project

$ git init

$ git init <directory>
41

Create a local git repository



git init

▸ convert an existing, unversioned project to a Git 
repository

▸ initialize a new, empty repository

creates a .git subdirectory in the current working directory 
with metadata
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git init



Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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Record changes to the repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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Record changes to the repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


git status

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$ git status <-s>
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What does this command do?



Create a file

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$  echo ‘Mastering Git. First Lecture.’ > 
README.md
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Create file



Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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$  echo ‘Mastering Git. First Lecture’ > README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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$  git add README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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$  git commit -m “Initial commit”

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Local Repository

Reference: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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$  echo $'\nThis is a new line' >> README.md

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Local Repository
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Local workflow

Reference: https://stackoverflow.com/a/3690796/909579



Art of commit

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

$  echo ‘Mastering Git. First Lecture’ > README.md

$ git status

$ git add README.md

$ git status

$ git commit -m “Initial commit”
52

First commit
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Commit ID

$  git commit -m 'init commit'

[main c6b75cd] init commit

<...>
$ openssl zlib -d <  
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef  -
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Commit ID = SHA-1 hash



Commit ID

$ openssl zlib -d <  
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef  -

▸ Full content
▸ The ID of the previous commit or its merge
▸ Commit and author date
▸ Committer and author’s name and email addresses
▸ Log message
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Commit ID content



Commit ID

$ openssl zlib -d <  
./.git/objects/61/8c0a1b1ed51b1f7a3456fc135311331ce41dbf | sha1sum
c6b75cd8d61e5be49fa4f23ee2025fed952e0aef  -
commit c6b75cd8d61e5be49fa4f23ee2025fed952e0aef 
parent 6294ij1k53w43uf2fd94168ac410eca1e98 er34q
Author Irina Gulina <igulina@redhat.com> 1659644787 -0700 
committer Irina Gulina<igulina2redhat.com> 1659644787 -0700 

feature: my awesome feature
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Commit ID content
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Git workflow

What happens locally?

Remote
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Git workflow

Git workflow

Remote



Commit

What VCS hosting 
platforms do you know?
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git Setup

● Create a new repository on GitHub (remote origin)
● Add remote origin locally
● Push the changes to remote origin

60

Origin + Local



git Setup

● Create a new repository on GitHub (remote origin)
● Add remote origin locally

･ $ git remote add origin 
git@github.com:<userID>/<repo_name>.git

● Push the changes to remote origin
$ git branch -M main
$ git push -u origin main
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Origin + Local



git clone

$ exit from the previous repository (cd ..)

$ git clone  https://github.com/libgit2/pygit2
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Clone someone’s git repository

https://github.com/libgit2/pygit2


clone vs git init

git clone is dependent on git init
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Clone vs git init



clone vs git init

Do it yourself, connect locally cloned repo 

with its origin remote version… 
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Local + Origin remote



HTTPS or SSH

$ git rm <file_name>

$ git mv <file_name>
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Delete and move files



Stage changes

$ git add --all

$ git add -A

$ git add .
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Add files



Stage changes

$  git commit -m 'repo cleanup'

[main c6b75cd] repo cleanup

<...>

 delete mode 100644 foo

 rename myfile.txt => roles/myfile.txt (100%)
67

Add files



HTTPS or SSH

HTTPS or SSH?
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git clone

$ git clone git@github.com:libgit2/pygit2.git

69

Clone someone’s git repository

mailto:git@github.com


HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

▸ Both are communication protocols.
▸ Both work for providing a reliable and secure connection
▸ Encrypted

70

HTTPS or SSH?



HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

▸ Smart - HTTPS
▸ username/password authentication
▸ Pros and Cons

● Fast, efficient, firewalled approved
● Writing username/password for authentication

71

HTTPS 



HTTPS or SSH

Reference: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

● Smarter
● Private key-based authentication
● Pros and Cons

i. Fast, efficient, firewall approved
ii. One-time association: your key in a git forge
iii. Auth is mandatory
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SSH



Commit

Do NOT use
git:// and http://
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HTTPS or SSH

● gitlab.com account
● SSH key is in your account
● class repo is forked
● We have a UCO - GitLab mapping

i. https://gitlab.com/redhat/research/mastering-gi
t/-/issues/2

ii. https://gitlab.com/redhat/research/mastering-gi
t/-/issues/3 
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No homework but requirements:

https://gitlab.com/redhat/research/mastering-git/-/issues/2
https://gitlab.com/redhat/research/mastering-git/-/issues/2
https://gitlab.com/redhat/research/mastering-git/-/issues/3
https://gitlab.com/redhat/research/mastering-git/-/issues/3


Commit

LAB
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76

Bonus



README

How cool is Your
README?
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README

Detailed description of a git project

▸ What is the project about
▸ What are the user cases
▸ How it is organized
▸ How to install and use it

… and more
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What is README?



HTTPS or SSH

● the first impression about your project 

● improve engagement with the project

● help others get involved
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Why is README important?



HTTPS or SSH

● It should exist!

● No unique guide.

● Fairly brief but detailed.

● Answer what, why, and the how of the project.
✓ TItle, description, demo, table of contents (optional), how to install and 

run the project, how to use the project - examples, user/pass 
requirements, credits, references, license (ref), badges (optional), howto 
contribute and project organization, TESTS, feedback, buy_me_coffee…
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How does a good README look?



HTTPS or SSH

● Check out big popular projects. Use templates and generators, e.g.: 

https://github.com/kefranabg/readme-md-generator

● Located at the top level of the project directory

● Keep it up-to-date

● Peek a language

● Format and structure it
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How does a good README look?

https://github.com/kefranabg/readme-md-generator


THE END

Questions?
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THE END

We have Questions!
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THE END

THANK YOU!
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