
Mastering git
Lesson 2

Irina Gulina Tomas Tomecek

Questions

Recap Lab 1

2

Today’s class

▸ Slides 41 and 52 from Lecture #1
･ Create a local repository
･ Make it a version controlled
･ Create a file with some content. What will show git status?
･ Notify git about that new file
･ Save your changes in a repository

▸ Share your local repository publicly
･ Create an origin
･ How to connect your origin with a local? What protocol? Why?
･ Sync origin and local. How?

Lab 1: Local => Origin

3

Today’s class

▸ Create an origin repository in UI
▸ Create a local version of it. How?
▸ Difference between init and clone

Lab 1: Origin => Local

4

Questions

Any questions or
suggestions?

5

Questions

We have questions!

6

Today’s class

▸ What is a staging area?
▸ In what 4 states can a file be when running git status?
▸ What does git commit do?

Questions

7

Today’s class

▸ How does branching work in git
▸ Best practices for branching
▸ Git tags: how to use them and what’s their use case?
▸ Stash: put your current work on a shelf and restore it later.

▸ Labs: branching!!
▸ Homework 1 assignment

Today’s class

8

Git Branching

9

Branching

More info: https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

What branch is?

10

main

Why branching

▸ Work in parallel
▸ Keep main branch free from questionable code
▸ Experiment easily

Why do we need branches?

11

First branch

Git version 2.41.0

What is the first branch?

12

Branching

● Default branch
● Create a new branch
● List branches
● Switch branches
● Work in parallel on different branches
● Merge branches
● Delete a branch
● Rename a branch
● *Stash changes and tags
● Push and pull a branch to a remote server

Branching operations

13

Create a branch

$ git branch testing

Create a branch

14

main

List branches

$ git branch <--list>
$ git branch -v
$ git branch -vv
$ git branch -a

List branches

15

main

Switch branches

$ git switch testing

Switch branches

16

Switch branches

$ git switch -c testing

Create and switch

17

Switch vs Checkout

$ git switch = git checkout
$ git switch -c = git checkout -b

git-checkout - Switch branches or restore working tree files
git-restore - Restore working tree files
git-switch - Switch branches

Switch vs Checkout

18

Head

HEAD

19

.git/refs/heads/

.git/HEAD

Work in parallel

$ touch file.txt
$ git commit -a -m “add file.txt”

Work in parallel

20

Work in parallel

$ git switch main

Work in parallel

21

Work in parallel

$ touch file2.txt

$ git commit -a -m “add file2.txt”

Work in parallel

22

Rename branches

$ git branch -m <new_name>

Rename a branch

23

Merge branches

$ git switch main
$ git status
$ git fetch
$ git pull
$ git merge hotfix

Merge branches

24

 main

Merge branches

$ git switch main
$ git status
$ git fetch
$ git pull
$ git merge hotfix

Merge branches (ff)

25

main

Merge branches

$ git switch iss53
$ vi index.html
$ git commit a -m “fix link [issue 53]”

Merge branches

26

 main

Merge branches

$ git switch main
$ git status
$ git merge iss53

Merge branches (merge commit)

27

 main

Merge branches

Merge branches

28

Delete branches

$ git branch -d testing
$ git branch -D testing

$ git push origin --delete testing

$ git push origin :testing

Delete a branch

29

Stash

Stash

30

Default branch

A special “branch”

git has high-level operations to work with it

Handy to put things on side

git stash

31

Default branch

git stash list

git stash show

git stash [push]

git stash apply vs. git stash pop

stash@{2}

git log stash

git stash (commands)

32

THE END

Tags

33

Default branch

Points to a commit and doesn’t change as you commit more

Used mainly to track releases and deployments

Lightweight vs. Annotated

Push/pull tags

git tag

34

THE END

Test your knowledge now!

35

Default branch

▸ Fork this repo and clone it: https://gitlab.com/redhat/research/mastering-git/
▸ Create a branch
▸ Switch to that branch
▸ List branches
▸ Create another branch
▸ Switch to it and create a commit
▸ Switch to the previous branch and merge the last branch into it
▸ Delete the previous branch
▸ Special task: create a new branch and merge it into the first branch in a way so it’s not

fast-forward: there is a merge commit

Task

36

https://gitlab.com/redhat/research/mastering-git/

THE END

Questions?

37

HW

https://gitlab.com/redhat/research/mastering-git#class-2-homework

All homework info will be in README.md

Class 2 homework

38

https://gitlab.com/redhat/research/mastering-git#class-2-homework

Bonus Task

Make a contribution to an Open Source project.

▸ Not an University Project
▸ Not owned by you
▸ MR/PR doesn’t need to be merged by the Task/Course deadline
▸ A change can be of any content (not necessary code, it can be docs for example), but it must

be meaningful, positive
▸ See details in “Mastering git” Readme

First Timers Only
10 C++ open source projects welcoming contributions
Contributions-welcome topics on GitHub
Hacktoberfest - 10th anniversary. Check on participation info

Bonus Task

39

https://www.firsttimersonly.com/
https://blog.codacy.com/10-cpp-open-source-projects/
https://github.com/topics/contributions-welcome
https://hacktoberfest.com/
https://hacktoberfest.com/participation/

THE END

THANK YOU!

40

