
Mastering git
Lesson 4 (fixing problems)

Irina Gulina Tomas Tomecek

Questions

Class 2 homework feedback

2

▸ Some solutions were fairly similar

▸ git push -u is winning

▸ Loved the creativity of the content

▸ Why the micro editor?

▸

▸ Slides are not meant to be the source of information, instead use:

･ $ man git - https://git-scm.com/docs/git

･ https://git-scm.com/book/en/v2 (a bit outdated)

･ https://www.atlassian.com/git/tutorials

https://git-scm.com/docs/git
https://git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials

Questions

Class 3 followups (push --set-upstream)

3

▸ $ man git-push

When neither the command-line nor the configuration specify what to

push, the default behavior is used, which corresponds to the simple

value for push.default: the current branch is pushed to the

corresponding upstream branch, but as a safety measure, the push is

aborted if the upstream branch does not have the same name as the

local one.

Questions

Class 3 followups (push.default #1)

4

▸ $ man git-config

push.default

 simple - pushes the current branch with the same name on the

remote.

If you are working on a centralized workflow (pushing to the same

repository you pull from, which is typically origin), then you need

to configure an upstream branch with the same name.

This mode is the default since Git 2.0, and is the safest option

suited for beginners.

Questions

Class 3 followups (push.default #2)

5

▸ $ man git-config

push.default

 current - push the current branch to update a branch with the

same name on the receiving end. Works in both central and

non-central workflows.

 upstream - push the current branch back to the branch whose

changes are usually integrated into the current branch (which is

called @{upstream}). This mode only makes sense if you are pushing

to the same repository you would normally pull from (i.e. central

workflow).

Questions

Class 3 followups (fetch/push URLs)

6

Questions

Class 3 HW feedback next time

7

▸ notebook updating

▸ some of your feedback applied already in this class

Questions

Any questions or
suggestions?

8

Questions

We do have questions!

9

▸ What’s the difference between origin and upstream remotes?
▸ How do you get the latest content from upstream

･ To your local clone
･ To your fork

▸ What constitutes a bad pull request in terms of best practices we discussed last week?
▸ Did anyone already use some knowledge from this class in their projects?

Today’s class

▸ Fixing Mistakes

▸ Handy git tools and commands

▸ Rebase and Merge Conflicts

▸ Issues of various complexity

･ Local troubles

･ Public troubles

▸ Labs:

･ Solving merge conflicts

･ Changing history

Today’s class

10

How to find things?

11

How to find things?

1. 1c002dd4b536e7479fe34593e72e6c6c1819e53b

2. $ git log --oneline

1c002dd changed the version number

085bb3b removed unnecessary test code

a11bef0 init commit

Revision selectors

12

3. $ git reflog

734713b HEAD@{0}: commit: fix refs handling, added gc
d921970 HEAD@{1}: merge phedders/rdocs: Merge made by the
'recursive' strategy.
1c002dd HEAD@{2}: commit: add some blame stuff
1c36188 HEAD@{3}: rebase -i (squash): updating HEAD
95df984 HEAD@{4}: commit: # This is a combination of two

How to find things? Revision selectors

13

4. $ git show main@{yesterday}

$ git show main@{2.months.ago}

How to find things? Revision selectors

14

5. Ancestry references (^ ~) : git show + <reference/pointer>

▸ ca82a6d^

▸ ca82a6d^^

▸ HEAD

▸ HEAD^

▸ HEAD^2 (is it the same as ca82a6d^^ ?)

▸ HEAD~ (is it the same as HEAD^ ?)

▸ HEAD~2 (is it the same as HEAD^2 ?)

▸ HEAD~3^2 (is it valid?)

How to find things? Revision selectors

15

$ man gitrevisions

How to find things?

Navigating in history of commits, formatting + filtering

Examples:

git log --oneline

0e25143 Merge branch 'feature'

ad8621a Fix a bug in the feature

16b36c6 Add a new feature

23ad9ad Add the initial code base

git log

16

git log --oneline --decorating

0e25143 (HEAD, main) Merge branch 'feature'

ad8621a (feature) Fix a bug in the feature

16b36c6 Add a new feature

23ad9ad (tag: v0.2) Add the initial code base

How to find things?

Examples:

git log --stat

commit f7dfcf6b91c015f01e449dcfa77c3072c3d71cca

Author: Janine Machs <jmachs@example.com>

Date: Thu Jun 30 06:42:02 2022 +0000

 https://github.com/myProject/projectname/pull/161#pullrequestreview-1023271581

 + renamed sample to display purpose

 ...cluster.yml => cluster.yml} | 2 +-

 roles/configure_hsr.yml | 13 ++-----------

 roles/main.yml | 27 ++++++++++++++-------------

 3 files changed, 17 insertions(+), 25 deletions(-)

git log

17

How to find things?

Examples:

git log -p

commit 16b36c697eb2d24302f89aa22d9170dfe609855b

Author: Anna <anna@example.com>

Date: Fri Sept 25 17:31:57 2022 -0500

 Fix a bug in the feature

diff --git a/hello.py b/hello.py

index 18ca709..c673b40 100644

--- a/hello.py

+++ b/hello.py

@@ -13,14 +13,14 @@ B

-print("Hello, World!")

+print("Hello, Git!")

git log

18

How to find things?

Release announcement

Barbora (2):
 Fix a bug in the feature
 Fix a serious security hole in our framework

Jirka (3):
 Add the initial code base
 Add a new feature
 Merge branch 'feature'

git shortlog

19

How to find things?

Display branch structure of commit history

git log –graph –oneline

graph

20

How to find things?

git log -3 <- what does it do?

git log --after=”2022-6-11”

git log --after=’yesterday’

git log --after=”2022-6-11” –before=’2022-7-11’

git log --author=’Mary’

git log --author=’Mary\|Tomas’

git log --grep=”BZ-123:”

git log --foo.py bar.py

giit log -S”Hello, World”

git log main..feature

git log

21

 Questions

How to show commits on the “experiment” branch, which are not on “main”?

The opposite?

How to show local commits which are not on origin remote?

How to find things?

22

Solution:

$ git log main..experiment

7. Multiple points

How to see what commits are in any of several branches, that aren’t in the branch you’re currently on?

How to see all commits on A and B, which are not on C?

More than two references can be specified.

Solution:

$ git log A B ^C
$ git log A B --not C

How to find things?

23

Rebasing

More info: https://git-scm.com/book/en/v2/Git-Branching-Rebasing

Rebasing

24

https://git-scm.com/book/en/v2/Git-Branching-Rebasing

25

Rebase

Source: https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

 Interactive rebase
 Changing of commits in many ways: editing, deleting, squashing, reordering.

 git rebase -i <revision_selector>

 git rebase -i HEAD~4

$ man git-rebase

 git-rebase - Reapply commits on top of another base tip

26

27

Interactive rebase

Source: Tomas’ laptop

HEAD

 Interactive rebase (lab)
▸ Let’s try this out

▸ https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab4.md?ref_type=heads

▸ Task 3

28

https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab4.md?ref_type=heads

 Interactive rebase
 If one modifies a commit, that commit and all following commits will have new ….. ?

 How will it affect local/not pushed changes?

 How will it affect pushed changes?

29

 Interactive rebase
 If one modifies a commit, that commit and all following commits will have new ….. ?

 How will it affect local/not pushed changes?

 How will it affect pushed changes?

 Golden Rule of Rebase - Never rebase on Public branches

30

 Rebase vs Merge
 Rebase and Merge solve the same problem - integrate changes between branches, but they do it in a

different way.

31

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

 Rebase vs Merge
git checkout feature
git merge main

git merge feature main

32

 Rebase vs Merge
git checkout feature
git merge main

git merge feature main

33

 Rebase vs Merge
git checkout feature
git rebase main

34

Rebasing

Merge conflicts

35

 Merge conflicts
 An event when git can’t resolve code differences between commits.

▸ Git fails to start the merge

error: Entry '' not uptodate. Cannot merge. (Changes in working directory)

▸ Git fails during the merge

error: Entry '' would be overwritten by merge. Cannot merge. (Changes in

staging area)

36

 Create a merge conflict
▸ Create a Git repo or take an existing one
▸ Add some text into a file
▸ Commit the change

▸ Create a new branch
▸ Overwrite text in that file and commit it

▸ Updata the same file again on the main branch, commi it

▸ Try to merge those two branches

37

 Resolve a merge conflict
● Identify the conflict
● Inspect it
● Make changes
● Stage those changes

38

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line

How to find things?

▸ git fetch upstream

▸ git switch -c lab3-solution-good upstream/lab3-solution-good

▸ git rebase upstream/lab3-solution-bad

Lab Scenario: rebase & conflicts

39

How to find things?

▸ https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab4.md?ref_type=heads

Class 4 lab

40

https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab4.md?ref_type=heads

How to find things?

Deadline October 25 23:59

▸ https://gitlab.com/redhat/research/mastering-git#class-4-homework

Class 4 homework

41

https://gitlab.com/redhat/research/mastering-git#class-4-homework

How to find things?

 Course grade: November 20

Course schedule

42

HW# 1 2 3 4 5 Bonus Task

Deadline 11.10 18.10 25.10 1.11 8.11 13.11

THE END

Questions?

43

THE END

THANK YOU!

44

