
Mastering git
Lesson 6 - last one 🎉🎉🎉

Irina Gulina Tomas Tomecek

How to find things?

 Course grade: November 20

Course schedule

2

Class N HW 2 3 4 5 6 Bonus Task

Deadline 11.10 18.10 25.10 8.11 13.11 13.11

Class 4 HW feedback

▸ Some used rebase, others used rebase i.
･ What is the difference between those two?
･ Will both of them work in a case of HW class 4?
･ Which is easier / preferable in HW class 4 situation and why?

▸ Some used push after rebase, others used push --force.
･ What is the difference between those two?
･ WIll both of them work?
･ Which is preferable in HW class 4 situation and why?

▸ merge rebase
▸ Commit messages

Local troubles

3

Class 5 HW feedback

▸

Local troubles

4

Questions

Any questions or
suggestions?

5

▸ Git Etiquette or mind your Git manners
▸ git blame, cherry-pick, submodule
▸ Efficient git
▸ Fetching pull/merge requests locally
▸ Activity in the end
▸ Let’s do a group picture!

Today’s class

6

Git Etiquette
or Mind your Git manners

7

Git Commit

8

9

● Don’t: Two and more changes in one commit

1e4faa0 Fix login timeout BZ, add logout step

● Do: One commit = One logical change

1e4faa0 Fix login timeout BZ
2r5asy8 Add logout step

Commit content

10

● Separate whitespace changes from code changes, especially
unrelated.
○ Mixing those is a great way to introduce a bug and
○ Complicates code review

Commit content

11

● Title/subject line
● Body

What is a commit message?

12

Commit message example
$ git log

commit <commit_id>
Author: <author_name> <author_email>
Date: Mon Apr 2 15:10:03 2020 -0400

Change how workers are represented

* Don't serialize the 'gracefully_shutdown' field
* Create a new 'missing' property and serialize it
* In the status API, list both online and missing workers

Requires PR: https://github.com/<project>/pull/921
 closes #354498

https://bugzilla.redhat.com/show_bug.cgi?id=354498

Commit Title or Subject line

Commit Body

13

What is a “bad” message?

 $ git log --oneline -5 --author irina --before "Wed Apr 7 2021"

dcc2d35 address comments
b7aac30 fix issue #123
0b7a4e4 various docs fixes
1e4faa0 ui bug fix
fc3d081 readme update
d21660dc ToDo
0b7a4e4 Mix fixes and cleanups
5h3d28g refactoring

14

What is a “bad” message?

 $ git log --oneline -8 --author irina --before "Wed Apr 7 2021"

dcc2d35 address comments <- what comments?
b7aac30 fix issue #123 <- of what project?
0b7a4e4 various docs fixes <- what docs? why?
1e4faa0 ui bug fix <- what was the bug?
fc3d081 readme update <- why?
d21660dc ToDo <- 😩😩😩😩
0b7a4e4 Mix fixes and cleanups <-🙈 🙉 🙊
5h3d28g refactoring <- 😭

Uninformative, look-elsewhere commit messages (titles)

15

● git log --pretty=oneline
● git rebase --interactive
● merge.summary
● git shortlog
● git format-patch, git send-email, …
● reflogs
● GUI tools for committing and browsing
● GitHub, SourceForge, Bitbucket, GitLab, … service

Usage of a commit title

Poor quality code can be refactored.
A terrible commit message lasts

forever.

16

17

For whom do you write commit messages?

18

● To help to understand the code change
○ What has been changed?
○ Why is that change necessary?

● To speed up the reviewing process
● To help to locate a bug
● To write a good release note or script it

Why should I write ‘good’ commit messages?

19

● git commit -m “Fix login timeout bug”
● git commit or git commit --verbose

What constitutes a good commit message?

Redirect user to the requested page after login

https://link/to/issue/tracker

20

● Capital letter, 50/72, no punctuation in the end

What constitutes a good commit message?

$ git commit

A brief summary of the commit

A paragraph describing what changed and its impact.

21

● Present Tense and Imperative Mood

“If accepted, this commit will <your commit message goes
here>.”

What constitutes a good commit message?

cf31d12 Adds login unit tests

7a9kj4f Fixed login unit tests

101q2wd Update login unit tests

1b7hn61 Removing login unit test

22

Add “keywords and/or emoji to commit message and/or footer based on scope and
set of rules. E.g.:

In Footer: close/closes/closed/fix/fixes/fixed/resolve/resolves/resolved
E.g: Fixes: #1 or Fixes #1
CHECK CONTRIBUTING.md like guidance on the project

Conventional / Emoji / Semantic commits

feat!: email customers on product changes

docs: correct spelling of CHANGELOG

feat(lang): add Polish language

fix: prevent racing of requests

👷 build(Electron): Bump version 7 to 9 ⬆
🎨 Improve structure / format of the code

🔥 Remove code or files
🐛 Fix a bug
🚑 Critical hotfix
✨ Introduce new features
📝 Add or update documentation
🚀 Deploy stuff

23

● Ticketing system != git log
○ “TICKET-123456 add missing params to class”
○ “Add missing meta fields to response”

❏ Takes space in 50 chars limit title
❏ Look-elsewhere for details message, I’m lazy
❏ May be not available for interested user or reviewer

(permissions, outage)

Ticket number in commit messages

24

● Clear Title - What is commit about?
● Present Tense and Imperative Mood
● No punctuation in a title
● Clear Body - What and why is it needed/changed vs how?
● 50/72
● Reference to an issue in a body message
● Follow the commit convention defined by the team

What constitutes a good commit message?

Git Push

25

IF YOU DO FORCE PUSH...
May the force stay with you.

26

27

● It’s ok to force push to your local branch
● It’s ok to force push to your (unmerged/open) PR/MR
● It’s not ok to force push to a public branch

Git push --force trap

28

● Lost data
● Altered history
● Not happy colleagues
● Lost karma points

Git push --force consequences

29

● Protect important branches
● Backup
● Use git branch/switch
● Use --force-with-lease, carefully
● Use PR revert

How to avoid unwanted force push

You have a great freedom...
to change your history locally.

30

Submitting a PR

31

32

● Share changes
● Get review and feedback
● Encourage quality

Why do we use PR/MR workflow?

33

● Complete piece of work
● Adds value in some way
● Solid title and body
● Clear commit history
● Small
● Meets project’s contribution guidelines

What constitutes a good PR/MR?

34

● Follow the repo’s conventions
● Double check your code (and ToDos)
● Add docs
● Keep changes small
● Separate branch
● Be clear and specific
● Check your ego and be polite,

Contributors (before submitting a PR/MR)

Open Source Contribution (GitHub)

35

Open Source Contribution (GitLab)

36

37

● Check your ego and be polite
○ @username ping!

○ @username review please

● Ensure your branch merge and tests pass
● Use --amend, --fixup or rebase -i
● Don’t merge your own PR

Contributors (after submitting a PR/MR)

38

● Don’t overuse WIP label
● Remove WIP label when ready
● “This is ready for review, please.”

WIP PR/MR

Reviewing a PR

39

40

● Be kind and polite
○ @username ping, error here!

○ @username s/foo/bar

● Check commit history
● Don’t fix issues
● Ensure the branch can be merged
● CI Tests pass
● Don’t merge WIPs
● Squash
● Delete branch

PR Reviewers

Questions!

1. What’s the difference between plain, --soft and --hard reset?

We do have questions!

41

Questions!

2. What’s wrong with this commit title?

“aDDED new best functionality in this commmmit: implementing
option --foobar.”

We do have questions!

42

Questions!

2. What’s wrong with this commit title?

“aDDED new best functionality in this commmmit: implementing
option --foobar.”

“Add option --foobar”

We do have questions!

43

Questions!

3. What’s the difference between fetch and pull

We do have questions!

44

Questions!

4. What does push do?

We do have questions!

45

Questions!

5. What does force push do?

We do have questions!

46

More handy
commands

47

blame

git blame

48

display author metadata of lines in a committed file

$ git blame README.md

6997a160 (Tomas Tomecek 2023-03-10 11:24:09 +0100 25) ## Lectors

6997a160 (Tomas Tomecek 2023-03-10 11:24:09 +0100 26) * Irina…

cb4e8b8b (Tomas Tomecek 2023-05-26 18:56:07 +0200 27) * [Tomáš…

cb4e8b8b (Tomas Tomecek 2023-05-26 18:56:07 +0200 28)

41c6d3a1 (Tomas Tomecek 2023-05-29 13:43:00 +0200 29) You can…

41c6d3a1 (Tomas Tomecek 2023-05-29 13:43:00 +

blame

git blame

49

display of author metadata attached to specific committed lines in a file

git blame NAME_OF_THE_FILE

If we want to know more about the commit, what command we can use?

blame

git blame

50

display of author metadata attached to specific committed lines in a file

git blame NAME_OF_THE_FILE

If we want to know more about the commit, what command we can use?

git log -p SHA-1

git show SHA-1

blame

git blame

51

display of author metadata attached to specific committed lines in a file

git blame -e NAME_OF_THE_FILE

git blame -L startLineNumber,endLineNumber filePath

git blame -w NAME_OF_THE_FILE

cherry-pick

git cherry-pick

52

Pick a commit by reference and append to the current working HEAD

 a - b - c - d Main a - b - c - d - f Main
 \ \
 e - f - g Feature e - f - g Feature

When may it be useful?

What is the danger of using it?

submodule

git submodule

53

allows to keep a git repository as a
subdirectory of another git repository

.

Source: https://bionicape.com/unreal-plugins-as-git-submodules/

https://bionicape.com/unreal-plugins-as-git-submodules/

blame

git submodule

54

allows to keep a git repository as a subdirectory of another git repository

▸ When an external component is changing too fast.
▸ When an external component isn’t updated very often
▸ When a piece of the project is delegated to a third party and you want to integrate their

work at a specific time or release.

Sometimes, it’s the best way to create and manage internal packages or manage changing micro
services

blame

git submodule

55

allows to keep a git repository as a subdirectory of another git repository

▸ Points to a specific commit, not to a ref or branch
▸ Static, not updated automatically when a host repo is updated

submodule

git submodule

56

allows to keep a git repository as a subdirectory of another git repository

git submodule add URL NAME

git submodule add https://gitlab.com/user-name/repo my-submodule

.gitsubmodule

[submodule "my-submodule"]
path = my-submodule
url = https://gitlab.com/user-name/repo

my-submodule

Those are new files on the project and needed to be committed.

blame

git submodule

57

allows to keep a git repository as a subdirectory of another git repository

git submodule init

git submodule update

git clone --recurse-submodules URL

git push --recurse-submodules=check

Questions

Continuous Integration (CI)

58

CI

Why?

59

▸ Run tests once a pull request is
created or updated

▸ Run tests once a pull request is
merged

▸ GitHub example →

CI

How?

60

▸ GitHub Checks
interface

CI

Source: https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

git hooks

61

▸ “Git has a way to fire off custom scripts when certain important actions occur.”

▸ .git/hooks/

▸ Client side, Server side hooks

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

CI

pre-commit

62

▸ https://pre-commit.com/

▸ Run checks & linters locally

▸ Fix code before committing

▸ Run them during the CI process as
well

▸ ls .git/hooks/pre-commit

https://pre-commit.com/

Questions

Efficient git

63

Efficient git

▸ git config --global --add alias.co commit

▸ $ cat ~/.gitconfig

[alias]

 co = commit

▸ git co -m ‘this is a commit’

git aliases

64

▸ less typing \o/

Efficient git

▸ $ cat ~/.bashrc # or ~/.your-shell-rc

▸ alias g=git

alias gc=git commit --verbose

▸ g co -m ‘this is a commit’

▸ gc -m ‘this is also a commit’

shell aliases

65

▸ even less typing
\ /

 \o/

blame

git blame

66

display of author metadata attached to specific committed lines in a file

git blame NAME_OF_THE_FILE

git who, git history, git praise —> how to add an alias?

blame

git blame

67

display of author metadata attached to specific committed lines in a file

git blame NAME_OF_THE_FILE

git who, git history, git praise —> how to add an alias?

git config --global alias.history blame

git config --global alias.who blame

git config --global alias.praise blame

Efficient git

▸ [tt@cashew]$ cat ~/.bashrc

export GIT_PS1_SHOWDIRTYSTATE=y

source /usr/share/git-core/contrib/completion/git-prompt.sh

export PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ '

▸ [tt@cashew git-repo (oct-copr-storage-move *)]$ vim README.md

git status in your shell prompt (Fedora)

68

▸ no typing
\ /

 \ /

 \o/

Efficient git

▸ $ tig

Text-mode interface for git

69

▸ https://github.com/jonas/tig

▸ git log, git add, git branch -a, git blame on steroids

https://github.com/jonas/tig

Efficient git

Check out a pull request locally (why)

70

▸ Why?

･ Review the code locally

･ Try the code

･ Cherry-pick commits

Efficient git

▸ $ cat ~/.gitconfig

[remote "upstream"]

 fetch = +refs/pull/*/head:refs/remotes/upstream/pr/*

 fetch = +refs/merge-requests/*/head:refs/remotes/upstream/mr/*

▸ git fetch origin pull/ID/head:BRANCH_NAME

git fetch origin pull/978/head:my_branch
git switch my_branch

Check out a pull request locally (how)

71

fetch all by default

fetch only one

Efficient git

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

72

Git Internals - Plumbing and Porcelain

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

Efficient git

https://git-scm.com/docs/git-rebase

git rebase my-branch // internals

73

▸ All changes made by commits in the current branch but that are not in <upstream> are saved to a temporary area.
This is the same set of commits that would be shown by git log <upstream>..HEAD;

▸ The current branch is reset to <upstream>. This has the exact same effect as git reset --hard <upstream>.
ORIG_HEAD is set to point at the tip of the branch before the reset.

▸ The commits that were previously saved into the temporary area are then reapplied to the current branch, one by one,
in order. Note that any commits in HEAD which introduce the same textual changes as a commit in
HEAD..<upstream> are omitted (i.e., a patch already accepted upstream with a different commit message or
timestamp will be skipped).

▸ It is possible that a merge failure will prevent this process from being completely automatic. You will have to resolve
any such merge failure and run git rebase --continue. Another option is to bypass the commit that caused the
merge failure with git rebase --skip. To check out the original <branch> and remove the .git/rebase-apply
working files, use the command git rebase --abort instead.

▸ MUCH MORE INFO IN THE git-rebase MANPAGE

https://git-scm.com/docs/git-rebase

Questions

git Issues

74

a lightweight issue-tracking system that is available in all repositories

git issues

75

a lightweight issue-tracking system that is available in all repositories

▸ Small? Go defaults
▸ More traffic? Introduce templates, labels

･ Avoid duplicates
･ Add structure, be specific

▸ Vulnerability reports
▸ Triage and close issues

･ Labels
･ By responsibility
･ Non triages
･ NeedInfo
･ HelpWanted

･ Mention people
･ Assign

git issues

76

git issues

77

▸ https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab6.md

Lab

78

https://gitlab.com/redhat/research/mastering-git/-/blob/main/labs/lab6.md

Class 6 homework
https://gitlab.com/redhat/research/mastering-git#class-6-homework

Questions to answer
1. How many commits were merged into main between September 1st and October 30th 2023?

2. Who authored commit “Merge branch 'hw03' into 'main'” and what is the commit body?
3. Find one commit that you think should have better title or body and tell us how and why?

･ If you are the author, that’s amazing :)
4. Show us a commit that DID NOT change README.md in the month of September?
5. How many unique contributors the repository has at October 31st?
6. How many commits differ between main and main-oct-9?
7. Which commit added this line?

Grading: successfully complete 5 mandatory homeworks, or 4/5 homeworks
plus a bonus task

79

https://gitlab.com/redhat/research/mastering-git#class-6-homework

Class 6 homework
▸ Push a single commit with answers in your fork of mastering-git in a text file <UCO>.txt in

class6_homework/ directory in a branch named class6-homework
▸ No MR
▸ For every question, send us all commands you ran to find out the answer.
▸ The file syntax:

Question 1
command 1
command 2
Answer/Text comment

Question 2
command 2
Answer

Question 3

80

Questions!

▸ Make a group Picture

▸ Today

▸ 18:00

▸ U drevaka

Beer/Lemonade with the teachers

81

THE END

THANK YOU!82

