
PV181 Laboratory of security

and applied cryptography

Introduction to Applied Cryptography

Part 1, seminar 1: Symmetric cryptography

Łukasz Chmielewski
Email: chmiel@fi.muni.cz Consultations: A406, 9.00-11.00 on Fridays

| PV1811

mailto:chmiel@fi.muni.cz

Brief Overview

• Motivation / Goals

• Introduction to Cryptographic Primitives:

– Symmetric vs. Asymmetric

– RNG, Hash Functions

• Standards / Test Vectors

• Symmetric Cryptography

2 | PV181

Motivation

Why do we need it?

• TLS: on our Web-browsers

• Cards: Payment cards

• Wireless communications:

– Wifi , Bluetooth

• Mobile communications

• Encrypted data storage

• Crypto-currencies

3 | PV181

Goals of Cryptography

• Confidentiality (privacy) - preventing open access

– ciphers

• Authentication:

1. Entity – identity verification – various (password, MAC, …)

2. Data origin – identity of message originator – MAC

• Integrity - preventing unauthorized modification

– Hash functions

• Authentication + Confidentiality:

– Authenticated Encryption

• Non-repudiation - preventing denial of actions

– Digital signatures

4 | PV181

Crypto primitives
(covered today)

• Ciphers – encryption/decryption of data using key

– Symmetric ciphers – same key for enc/dec

– Asymmetric ciphers – different key for enc/dec

• Random number generators (RNGs)

– Key generation – covered by Seminar 2.

• Hash functions – “unique” fingerprint of data

• Based on other primitives:

– MAC, PBKDF, Digital signatures

• Authenticated Encryption – often Cipher + MAC

| PV1815

encryption decryption

message Encrypted
message

Alice

Shared secret key

Bob

Adapted Network and

Internetwork Security (Stallings)

Decrypted
original

 message

| PV1816

Symmetric cryptosystem

MAC(k, m) MAC (k, m)

Tagmessage Tag +
message

Alice

Shared secret key

Bob

| PV1817

Message Authenticated Code (MAC)

? ==

Message with
data origin

encryption

decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original

 message

| PV1818

Asymmetric cryptosystem

Digital Signatures

Random number generators
(separate seminar)

• Used to generate: keys, IV, …

1. Truly RNG - physical process

– aperiodic, slow

2. Pseudo RNG (PRNG) – software function

– deterministic, periodic, fast

– initialized by seed – fully determines random data

• Combination often used:

– truly RNG used to generate seed for PRNG

– dev/urandom, dev/random in Linux, Fortuna scheme

9 | PV181

Standards
(separate seminar)

Everything is defined in standards:

• implementation, settings, usage, etc.

• If you need something look into standard

Different types:

• FIPS PUB 197 – AES block cipher

• RFC1321 – md5 hash function

• NIST SP,…

Covered by a future seminar.

10 | PV181

Implementation testing - test vectors

• Examples of input/output (and also intermediate) for

the reference implementation

• MD5 defined in RFC 1321:

– MD5(“”) = d41d8cd98f00b204e9800998ecf8427e

– MD5(“message digest”) = f96b697d7cb7938d525…

• AES defined in FIPS197:

– Plaintext: 00112233445566778899aabbccddeeff

– Key 000102030405060708090a0b0c0d0e0f

– Ciphertext 69c4e0d86a7b0430d8cdb78070b4c55a

11 | PV181

You will try this test vector for AES later!

Symmetric cryptography

12 | PV181

Block cipher (1)

• Input divided into blocks of fixed size (e.g 128 bits)

– Padding - message is padded to complete last block

• Different modes of operation:

– Insecure basic ECB mode – leaks info

– Secure modes: CBC, OFB,CFB,CTR,

GCM …

• CBC, OFB,CFB need initialization

– Initialization vector (IV) – must be known

13 | PV181

Source: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Block cipher (2)

• Formally a function: E : {0,1}n × {0, 1}k → {0, 1}n

• Usual scenario:

14 | PV181

Block ciphers - padding

 Standard method

ANSI X.923

ISO 10126

PKCS7

ISO/IEC 7816-4

Zero padding

... | DD DD DD DD DD DD DD DD | DD DD DD DD 81 A6 23 04 |

... | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |

... | DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 04 |

... | DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 00 |

... | DD DD DD DD DD DD DD DD | DD DD DD DD 80 00 00 00 |

| PV18115

What could be the problem here?

Length…

Block ciphers: ECB vs CBC mode

16 | PV181

Source: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Hash function

• Cryptographic hash function
H : {0, 1}∗ → {0, 1}m

• Arbitrary input size and fixed

output size e.g. 256 bits.

• Function is not injective (there are “collisions”).

• Hash is a compact representative of input (also called

imprint, (digital) fingerprint or message digest).

• Hash functions often used to protect integrity. First the
has is computed and then only the hash is protected
(e.g. digitally signed).

| PV18117

Hash functions - examples

• MD5

– Input: „Autentizace“.

– Output: 2445b187f4224583037888511d5411c7 .

– Output 128 bits, written in hexadecimal notation.

– Input: „Cutentizace“.

– Output: cd99abbba3306584e90270bf015b36a7.

– A single bit changed in input → big change in output,
so called “Avalanche effect”

• SHA-1

– Input: „Autentizace“.

– Output: 647315cd2a6c953cf5c29d36e0ad14e395ed1776

• SHA-256

– Input: „Autentizace“.

– Output: a2eb4bc98a5f71a4db02ed4aed7f12c4ead1e7c98323fda8ecbb69282e4df584

| PV18118

Secure Hash Algorithm (SHA)

• SHA-1

– NIST standard, collision found in 2016, 160 bits hash

• SHA-2

– function family: SHA-256, SHA-384, SHA-512, SHA-224

– defined in FIPS 180-2

– Recommended

• SHA-3

– New standard 2015

– Keccak sponge function family: SHAKE-128, SHA3-224, …

– defined in FIPS 202, used in FIPS-202, SP 800-185

– Recommended

19 | PV181

Password protection

password hashing & salting

1. Clear password could be stolen:

– store hash of password

 hash = H(password)

– Checking: password is correct if hash matches

2. Attack (brute force or dictionary)

– trying possible passwords “aaa”, “aab”…“zzz” – N tests

– N test for single but also for 2,3,… passwords !!!

3. Slow down attack - increase password size:

– random “salt” is added to password,

20 | PV181

Password protection

password hashing & salting

21 | PV181

Source: http://blog.conviso.com.br/worst-and-best-practices-for-secure-password-storage/

Key/password protection

• Encryption (session) key – encrypted using other

key – could be derived from password

• Insufficient entropy of passwords

– Only 200 millions of guesses for ****** password

– salt protects database of passwords not single password

(more info here)

• Password Based Key Derivation Function(PBDKF):

– 2 types PBDKF2 is newer (see PKCS#5)

– Slow down hashing (hence attack)

– Iterate (𝑐 times) hash function 𝐾 = 𝐻𝑐 𝑝𝑤𝑑 𝑠𝑎𝑙𝑡)

22 | PV181

https://crackstation.net/hashing-security.htm

PBKDF2

23 | PV181

Salt &

iterations
KEY

PBKDF2
keyPassword /

Passphrase
<cipher>

encrypted

KEY

Message authentication code (MAC)

24 | PV181

•

Source: https://www.tutorialspoint.com/cryptography/message_authentication.htm

Authenticated Encryption (AE)

• Only encryption can not provide data integrity

– Why? What happens if ya is tampered by the adversary?

• Only authentication does not provide confidentiality

• AE provides both: authentication & confidentiality

• Together with ciphertext, a tag/digest is generated from

plaintext and/or ciphertext

• Examples: AES-GCM mode, ASCON, etc. For more, see:

http://competitions.cr.yp.to/caesar-submissions.html

| PV18125

http://competitions.cr.yp.to/caesar-submissions.html

Practical part

• We will use crypto functions as blackbox

– No details of the cryptographic algorithms/functions

• We will use the pyca/cryptography library in Python

– version >= 3.6

• A very good documentation: https://cryptography.io/en/latest/

• I have uploaded a simple Python script that we will use:

– demo.py

• Pair up to discuss your results after you complete tasks

– Some tasks are just analyses, not completing the code.

• @Everyone: try to complete the tasks on your own but

– Ask your partner or me in case of problems ☺

26 | PV181

https://cryptography.io/en/latest/

Extra Information (Hash Functions)

• Available hash algorithms from the library:

– SHA-2 family, SHA-3 family, Blake2…

• Other weak algorithms:

– MD5, SHA-1 (against both collision attacks exist)

– Strongly discouraged to use the above two

• Import the necessary module:
from cryptography.hazmat.primitives import hashes

• Provide the choice of hash algorithm e.g.
hashes.SHA256()

• SHA3 family supports 224, 256, 384 and 512 digest sizes,

using hashes.SHA3_n, where n is the digest size

27 | PV181

Extra Information (Encryption with mode)

• Import the modules Cipher, algorithms, modes

• To encrypt with AES a mode of operation must be

provided; Also IV (initial value) or nonce is required.

• E.g. : cipher = Cipher(algorithms.AES(key),modes.CBC(iv))

• The input data may not be multiple of the block size (e.g.

128) ⇒ padding is required

• ECB or CBC require padding but many other modes:

CTR, OFB, CFB and GCM do not (!).

• Padding: from cryptography.hazmat.primitives import padding

– In PKCS7: the value of each byte is the total number of bytes to be

added. 01 (for 1 byte padding), 02 02 (for 2 bytes padding) etc.

– padding.PKCS7(128).padder(): here 128 is the size of block in bits

28 | PV181

Extra Information (AE & HMAC)

• AES-GCM:

– from cryptography.hazmat.primitives.ciphers.aead import
AESGCM

• Associated data: additional data that is authenticated but not

encrypted

• For this use: authenticate_additional_data(add_data)

• All AEs support key geneneration (AESGCM.generate_key(128))

and up-to 232 data size (for both input and associated data).

• AESCCM: AES with counter in CBC mode:

– from cryptography.hazmat.primitives.ciphers.aead import
AESCCM

• Hash-based MAC takes an input and a secret key

– from cryptography.hazmat.primitives import hmac

29 | PV181

Extra Information (HKDF)

• HMAC-based extract-and-expand KDF (do not use for

password storage):

– from cryptography.hazmat.primitives.kdf.hkdf import HKDF

• HKDF(salt,sourcekey,contxtinfo,L) → K[1]∥K[2]∥...∥K[t],

where L is the output length of HKDF in bits

• Two step process:

– PRK = HMAC(salt,sourcekey), the first argument is the HMAC key

(extract)

– K[1] = HMAC(PRK, contxtinfo∥0)

– K[i+1] = HMAC(PRK,K[i]∥contxtinfo∥0), where 1 ≤ I ≤ t (expand)

Here t = ⌈L/h⌉ and K[t] is truncated to first L (mod h) bits and h is the

output length of HMAC.

30 | PV181

Assignment 1

• This is a programming assignment worth 10 points. Please

upload your (python) scripts via the course webpage.

• The deadline for submission (normally) would be September

27th, 2023, 08:00.

However, this is assignment 1 so I give time till

End (23:59) of Friday 29th of September.

• Your answer should be contained in one .py file. Please

name the submission file as <uco_number>_ hw1.py.

• It must contain comments so that it is reasonably easy to

understand how to run the script for evaluating each answer.

• Soft deadline: -3 points for every started 24 hours

31 | PV181

Assignment 1 - Tasks
1. Write a function that can read and encrypt the file alice.txt using AES-GCM with 192

and 256-bit keys. The keys must be cryptographically secure (You can not use the

key generating function of AESGCM). The output of the (authenticated) encryption

should be written in a file say alice_enc.txt. Call this function from your main function.

[2.5 points].

2. Write a function that will decrypt alice_enc.txt. Your function should accept additional

data for encryption and the decryption process should return an error if the additional

data used is not the same as the one used for encryption. Call this function from your

main function. [3 points]

3. Make sure that your encryption and decryption code would work for large files (larger

than your RAM). Assume that the file would not fit into your memory. [1.5 points]

4. The key to the above-authenticated encryption should be generated using HKDF with

SHA3 256. Run the functions again for this key. [1.5 points]

5. Suppose you want to generate 384 bit key for encrypting two files with two different

AES instantiations namely with 128 and 256 bit keys. Write a function that will return

two such keys using HMAC. Call the function from the main. [1.5 points]

 Good luck!!!
32 | PV181

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Brief Overview
	Slide 3: Motivation
	Slide 4: Goals of Cryptography
	Slide 5: Crypto primitives (covered today)
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Random number generators (separate seminar)
	Slide 10: Standards (separate seminar)
	Slide 11: Implementation testing - test vectors
	Slide 12: Symmetric cryptography
	Slide 13: Block cipher (1)
	Slide 14: Block cipher (2)
	Slide 15: Block ciphers - padding
	Slide 16: Block ciphers: ECB vs CBC mode
	Slide 17: Hash function
	Slide 18: Hash functions - examples
	Slide 19: Secure Hash Algorithm (SHA)
	Slide 20: Password protection password hashing & salting
	Slide 21: Password protection password hashing & salting
	Slide 22: Key/password protection
	Slide 23: PBKDF2
	Slide 24: Message authentication code (MAC)
	Slide 25: Authenticated Encryption (AE)
	Slide 26: Practical part
	Slide 27: Extra Information (Hash Functions)
	Slide 28: Extra Information (Encryption with mode)
	Slide 29: Extra Information (AE & HMAC)
	Slide 30: Extra Information (HKDF)
	Slide 31: Assignment 1
	Slide 32: Assignment 1 - Tasks

