
PV181 Laboratory of security

and applied cryptography

Seminar 12:

Crypto-libraries protected against hardware attacks

Łukasz Chmielewski
chmiel@fi.muni.cz

| PV1811

Outline

• Recall + goal of this seminar

– Digital signatures

– RSA vs. ECC

• Side Channel + Fault Injection speed run

• Secured X25519 library: sca25519

– Optionally: Demo

• Assignment this week:

– Securing RSA execution

2 | PV181

encryption decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original
message

| PV1813

Recall: Asymmetric cryptosystem

Recall: Digital signature scheme

4 | PV181

Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Is there a difference?

Recall: RSA vs. ECC

5 | PV181

• exponentiation ≈ scalar

multiplication

• multiplication ≈ points addition

• squaring ≈ point doubling

Why is hardware security important?

6 | PV181

Identity Theft

• Premium
Content Theft

Impersonation

Card / Money Theft

Phone / Money Theft

7 | PV181

Side-

Channel

Analysis

8 | PV181

Cookies Example

9 | PV181

Passive vs Active Side Channels

10 | PV181

Passive: analyze device behavior Active: change device behavior

Recent Practical Attacks

11 | PV181

Side Channels

• Time

• Power

• Electro Magnetic Emanations

• Light

• Sound

• Temperature

• …

12 | PV181

What can be attacked & why?

• Type of device?

• What kind of primitive?

• How much control do you have?

• What can you access?

• What would be the attacker’s goal?

• What is your goal?

• Where is the money?

• …

13 | PV181

Practical Setup Spectrum

14 | PV181

Some Other Practical Setups

15 | PV181

Actual (overcomplicated?) setup

16 | PV181

Simple Power Analysis (SPA) on RSA

18 | PV181

1996.

A = 1
for (i = n-1; i≥0; i−−)

A = A2 mod N
if (di = =1)

A = A*c mod N
end if

end for
Return A = cd mod N

ModExp(c){

}

M M M MS S S …

S

M

… S S S S S S S S S

1 0 1 0 0 0 1 0 0 1 0
Probe

“By carefully measuring the amount of time required to perform
private key operations, attackers may be able to find […] RSA

keys.”

Differential (Correlation) Power Analysis

19 | PV181

1999

1999

2004

random

inputs

…

n
 t
ra

c
e
s

Guess ෡𝒅 bits target state

User:

• HW of a register

• HD between current and previous register state

• ID model (value of a register)

𝑓𝑖 = Selection Function(random inputs, ෡𝒅, target state)

DPA = Difference of Means

𝑓𝑖 = ቊ
0 𝑖𝑓 𝐻𝑊 ≤ 16
1 𝑖𝑓 𝐻𝑊 > 16

𝑓𝑖 = 𝐻𝑊(𝑟𝑒𝑔_𝑠𝑡𝑎𝑡𝑒)

CPA = Pearson correlation

ModExp(𝒅)

• Problems with the above approaches:
• can we attack the key directly?

• we often do not get many traces with the

same secret

• can we use an unprotected device of the

same model?

• (Possible) Solution:
• We profile, i.e. template the unprotected device

• We use the profile to break the protected device

• Procedure:
1. Choose a model that describes the power consumption

2. Profile the unprotected device to create the template (Template Building)

3. Use the template to break the protected device (Template Matching)

• The same steps are always performed but the model can be different.
• So often we will not learn the secret but the hamming weight of the secret.

• Neural Networks can be used instead of Template Attacks

• Attacking Single Trace or Multiple Traces? Both are possible.
20

Controlled

unprotected device

Attacked

protected device

Profiled Attacks

Goals of Fault Injection

21 | PV181

• The goal is to change a critical value or to change the flow

of a program.

• Faults can be injected in several ways:
– Power glitches can disturb the power supply to the processor, resulting in

wrong values read from memory.

– Optical glitches with laser can force any elementary circuit to switch,

enabling the attacker to achieve a very specific change of data values or

behavior.

– Clock manipulation by introducing a few very short clock cycles which may

lead to the device misinterpreting a value read from memory.

– Cutting the power to the processor while performing important computations,

hoping to either prevent the system from taking measures against a detected

attack or get the system into a vulnerable state when the power is back.

• Differential Fault Analysis (DFA)

Fault Injection Example:
the “unlooper” device

22 | PV181

Fault Injection Example: the “unlooper” device

Warm-up question (1): where to glitch?

23 | PV181

RSA-CRT: Differential Fault Analysis

• Optimization of computing a signature giving about 3 or 4-fold speed-up

• Precompute the following values:

– Find dp = d (mod p-1), computed as dp = e-1 (mod p-1)

– Find dq = d (mod q-1)

– Compute iq = q-1 (mod p)

• Computations using mp = m (mod p) and mq = m (mod q)

• Signature or encryption (forgetting about hashing):

– sp = 𝑚𝑑𝑝 (mod p)

– sq = 𝑚𝑑𝑞 (mod q)

– Garner’s method (1965) to recombine sp and sq:

• s = sq + q · (iq(sp − sq) (mod p))

• Due to a limited time, we need to skip the math details on how to recover

p and q, but it is possible with one fault!

– If you are interested, ask me after the seminar; it is a so-called Bellcore attack, see for

example: https://eprint.iacr.org/2012/553.pdf

24 | PV181

https://eprint.iacr.org/2012/553.pdf

How to protect against FI?

25 | PV181

• You have to check that the operations was correctly

executed, for example:

– Duplication of operations;

– For signature generation you can verify the result

– Some SCA countermeasures will work even for FI

• But not all

Warm-up Question (2):
Software for PIN code verification

26 | PV181

• What is the problem here?

• What are the execution times of

the process for PIN inputs?

• [0,1,2,3], [5,3,0,2], [5,9,0,0]

• The execution time increases as

we get closer to

• [5,9,0,2]

Warm-up Task – parity check for DES key

27 | PV181

Warm-up Task – parity check for DES key
cont’d

28 | PV181

Tell me what is the key ☺

29 | PV181

Warm-up Task – parity check for DES key
cont’d

Question 1:
faster and more secure modexp - Montgomery ladder

30 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
if dj=0

x1=x0*x1; x0=x0
2

else
x0=x0*x1; x1=x1

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Both branches with the same

number and type of operations

(unlike square and multiply on

previous slide)

Is it constant-time & secure? Why?

Question 2:
even more secure modexp

31 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 3:
even more secure modexp

32 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 4:
even more more secure modexp

33 | PV181

x0=x; x1=x2; sw = 0
for j=k-2 to 0 {

b=dj

cswap(x0,x1,b⊕sw)
sw = sw⊕di
x1=x0*x1; x0=x0

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Constant-time? Depends on the

cswap… but it can be ☺

Other-side channels? Depends 

Is it constant-time & secure? Why?

Question 5:
Arithmetic Cswap – constant-time?

34 | PV181

Question 5:
Arithmetic Cswap – secure against other side-channels?

35 | PV181

sample 𝒕𝒊

⋮

Scalar multiplication trace

255
iterations

⋯

sample index

sa
m

p
le

 v
al

u
e

 (
V

)

Apply clustering (e.g. k-means), Template Attack, Deep Learning
to the set of 255 samples:

bits 0 bits 1

255 Samples255 Montgomery iterations

Message and exponent blinding

36 | PV181

𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

The sequence of operations (S, M) is related to the exponent bits.

However:

• If d is random: the sequence of exponent bits changes for every RSA execution

• If m is random: Intermediate data is random (masked) → hardly predicted!

DPA is based on the prediction of intermediate data.

Thesis: Any side-channel attack requiring multiple traces are repelled by message and exponent blinding

countermeasures.

For ECC there are corresponding countermeasures: coordinate blinding, scalar blinding, blinded scalar

multiplications, and no unblinding ☺

Message and exponent blinding for CRT?

37 | PV181

𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

• Message blinding is the same!

• Exponent blinding needs to be done twice:

sp = 𝑚𝑑𝑝 (mod p) = 𝑚𝑑𝑝+r*(p-1) (mod p)

sq = 𝑚𝑑𝑞 (mod q) = 𝑚𝑑𝑞+r*(q-1) (mod q)

• That does not stop FI attacks!

SCA&FI-protected Elliptic Curve library

• A protected library for ECDH

– key exchange & session key establishment

– It will be published in TCHES2023 volume 1 and

• presented at Ches 2023 in Prague

• Code library available from GitHub

• Useful links:

– https://eprint.iacr.org/2021/1003

– https://github.com/sca-secure-library-sca25519/sca25519

• Taking care of ECDSA:

– https://eprint.iacr.org/2022/1254

– I will add it to the repository later on.
38 | PV181

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254

What to do first

• Download (or clone) the code from:

– https://github.com/sca-secure-library-sca25519/sca25519

• If you do not know C then it will be tricky but in this

case try to be intuitive.

• Task 1: have a look at the STM32F407-unprotected:

– Please find the starting point.

– Please find the scalar multiplication function.

• And the scalar multiplication loop.

– What the code is doing?

39

https://github.com/sca-secure-library-sca25519/sca25519

Task 1: Unprotected Crypto Library

40

Task 1: Unprotected Crypto Library cont’d

41

Protected Crypto Library – other

implementations

Ephemeral & Static increase complexity

42

Task 2: Ephemeral Crypto Library

• Have a look at the STM32F407-ephermeral (and

STM32F407-static):

– Find scalar multiplication functions and the scalar multiplication loops

• Try to find one side-channel countermeasure and one fault

injection countermeasure. Have also a look at the list of

implemented countermeasures in:

– https://tches.iacr.org/index.php/TCHES/issue/view/312

• Can you explain the countermeasures?

• If you have time, then try to find one or two more

countermeasures

Remark: do not worry – this is a hard exercise.

43

https://tches.iacr.org/index.php/TCHES/issue/view/312

Task 2: Ephemeral Crypto Library - FI

44

Find the same countermeasure

in the static implementation.

Task 2: Ephemeral Crypto Library - SCA

45

Task 2: Ephemeral Crypto Library – SCA
cont’d

46

Task 3: Static Crypto Library – SCA

• Find scalar splitting (similar to blinding):

1. Generate 64-bit r and computer r-1

2. Compute P’ = [r-1*k]*P

3. Compute [r]*P’ = [k]P

• Does it work?

• Find this countermeasure in the static SCA code:

Steps 2 and 3.

47

Exercise: Protected Crypto Library 3

Step 2 Step 3

48

Efficiency Demo (Optionally)

49

Demo Instructions

• Open in a browser: https://github.com/sca-secure-

library-sca25519/sca25519

• And follow the instructions from there

– There are some issues related to the libopencm3 library

• You need a Discover board and an FTDI cable

• git clone https://github.com/sca-secure-library-

sca25519/sca25519.git

50

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519.git
https://github.com/sca-secure-library-sca25519/sca25519.git

Assignment 9 – Countermeasures

• This is a programming assignment. Please upload your

scripts/code and the required analysis via the course webpage.

• The deadline for submission is Dec. 13, 2023, 8:00.

– -3 points for each started 24h after the deadline.

• Your code should be contained in one .py file. Please name the

submission file as <uco_number>_hw9.zip. Put there both the

python code, the analysis document, and all data produced

during analysis (as long as the size is reasonable).

• The code must contain comments so that it is reasonably easy

to understand how to run the script for evaluating each answer.

51 | PV181

Assignment 9 - Tasks
1. Task 1: protect the CRT implementation with exponent blinding in the function TCR_protected! First, test

and then modify the code (the result should be the same). In a separate report (max 2 pages), write why

the countermeasure works (does not affect the correctness of the result). Then, perform a useful analysis

of the efficiency cost of the countermeasure (repeat the experiment a number of times and report a

percent increase). [3.5 points]

2. Task 2: protect the CRT implementation with message blinding! Note that this will require knowledge of e.

In the document, write why the countermeasure works. Then, perform a useful analysis of the cost of the

countermeasure. [3.0 points]

3. Task 3: protect the CRT implementation against fault injection! Any countermeasure is OK. In the

document, write why the countermeasure works. Then, perform a useful analysis of the cost of the

countermeasure. [2.5 points]

4. Task 4: combine all the countermeasures and measure the time of all additional countermeasures and

how well they work. Write that in the report. [1 points]

5. Bonus (3 points):

(a) Instead of exponent blinding, implement exponent splitting. How does it compare to blinding? [1 point]

(b) Implement another extra countermeasure (any, it can be either SCA or FI). What is its cost? [1 point]

(c) Implement yet another extra countermeasure (any, either SCA or FI). What is its cost? [1 point]

Remark: we are securing Python code and, for the sake of this exercise, assume that the code is directly

executed by the processor (and not interpreted etc.)

Consultation: Monday at 13:00 in A406.

Good luck!!!

52 | PV181

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Outline
	Slide 3
	Slide 4: Recall: Digital signature scheme
	Slide 5: Recall: RSA vs. ECC
	Slide 6: Why is hardware security important?
	Slide 7
	Slide 8
	Slide 9: Cookies Example
	Slide 10: Passive vs Active Side Channels
	Slide 11: Recent Practical Attacks
	Slide 12: Side Channels
	Slide 13: What can be attacked & why?
	Slide 14: Practical Setup Spectrum
	Slide 15: Some Other Practical Setups
	Slide 16: Actual (overcomplicated?) setup
	Slide 18: Simple Power Analysis (SPA) on RSA
	Slide 19: Differential (Correlation) Power Analysis
	Slide 20
	Slide 21: Goals of Fault Injection
	Slide 22: Fault Injection Example: the “unlooper” device
	Slide 23: Fault Injection Example: the “unlooper” device Warm-up question (1): where to glitch?
	Slide 24: RSA-CRT: Differential Fault Analysis
	Slide 25: How to protect against FI?
	Slide 26: Warm-up Question (2): Software for PIN code verification
	Slide 27: Warm-up Task – parity check for DES key
	Slide 28: Warm-up Task – parity check for DES key cont’d
	Slide 29: Warm-up Task – parity check for DES key cont’d
	Slide 30: Question 1: faster and more secure modexp - Montgomery ladder
	Slide 31: Question 2: even more secure modexp
	Slide 32: Question 3: even more secure modexp
	Slide 33: Question 4: even more more secure modexp
	Slide 34: Question 5: Arithmetic Cswap – constant-time?
	Slide 35: Question 5: Arithmetic Cswap – secure against other side-channels?
	Slide 36: Message and exponent blinding
	Slide 37: Message and exponent blinding for CRT?
	Slide 38: SCA&FI-protected Elliptic Curve library
	Slide 39: What to do first
	Slide 40: Task 1: Unprotected Crypto Library
	Slide 41: Task 1: Unprotected Crypto Library cont’d
	Slide 42: Protected Crypto Library – other implementations
	Slide 43: Task 2: Ephemeral Crypto Library
	Slide 44: Task 2: Ephemeral Crypto Library - FI
	Slide 45: Task 2: Ephemeral Crypto Library - SCA
	Slide 46: Task 2: Ephemeral Crypto Library – SCA cont’d
	Slide 47: Task 3: Static Crypto Library – SCA
	Slide 48: Exercise: Protected Crypto Library 3
	Slide 49: Efficiency Demo (Optionally)
	Slide 50: Demo Instructions
	Slide 51: Assignment 9 – Countermeasures
	Slide 52: Assignment 9 - Tasks

