PV181 Laboratory of security

and applied cryptography

Seminar 12:
Crypto-libraries protected against hardware attacks

t ukasz Chmielewski C R \’} CS

chmiel@fi.muni.cz
Lwt J Hy d

1 | pvisi www.fi.muni.cz/crocs

CR& CS

Outline

* Recall + goal of this seminar

— Digital signatures
— RSAvs. ECC

» Side Channel + Fault Injection speed run
« Secured X25519 library: sca25519

— Optionally: Demo
« Assignment this week:

— Securing RSA execution

2 | Pvi8l www.fi.muni.cz/crocs

CR& CS

Recall: Asymmetric cryptosystem

Public key of Bob

0,

Private key of Bob

mO,

Alice Bob
message Encrypted Decrypted
message original
Adapted Source: Network and message

Internetwork Security (Stallings)

3 | pvisl www.fi.muni.cz/crocs

CR& CS

Recall: Digital signature scheme

Public key of Alice

@E, Is there a difference?

Private key of Alice

oz,

Bob

Alice

message

verified
message

Source: Network and
Internetwork Security (Stallings)

4 | pvisl www.fi.muni.cz/crocs

CR& CS

Recall: RSA vs. ECC

es in Cryptogeaphy

2 -L__‘H\ Use of Elliptic Curv!
l‘h\\ k. wictac S Miller
x\:\" Expiarsiory Compatet SIS (o Reeaseh, B0 B HLE orwiown Hrigats, NY 1059

ABSTRACT

the

We disuss the wse of efliptic surves i STYPLOE aphy. To partieutsn e propose an analoBse of -

o key exchang® womcul which appears 1© e immune oM avracks of the style
rrent bounds for infeasible attack, it 2ppSE o be

Diffic-Hellmant
and Adleman. i !
heme OVER GE(p). & wmpummmal power Brows,

instern, Miller,
the Ditfie-Hellman® sl

about 20% faster than
(his disparity should get]

. equnentiation ~ scalar
multiplication -

multiplication = points addition
[S 1 ~ .
quarlng ~ pOInt dOUinng N\ Elliptic Curve Cryptosystems

aper i dedicared 1 Danied Shanks o the occusion of Bis et npeth borthdey

This p

pidly bigger:

jogs based on lliptic curves over finite Fields of public key
hese elliptic curve

Abstract, We discuss and
of a [finite feld. Tl
thm probles of

eryplosystems which use the multiplicative group
cryprosystems may be more secure, because he analog of the discrete logar:s
elliptic curves s likely to B¢ harder than the classical disrete logasithm problem. especially
aver GFiZ™) We discuss ihe question of primit? i an elliptic curve medulo p. and

aess of the ordet of the evclic subgroup generated by 3 global

give & theorem on nopsmoot

point

www.fi.muni.cz/crocs

CR& CS

Why Is hardware security important?

Card / Money Theft Identity Theft

e Premium Phone / Money Theft Impersonation

PASSPORT

6 | Pvisl www.fi.muni.cz/crocs

Channel

7 | Pvis1 www.fi.muni.cz/crocs

CR&CS

www.fi.muni.cz/crocs

| PV181

CR& CS

Cookies Example

09l $|%

9 | pvisl

CR& CS

Passive vs Active Side Channels

Passive: analyze device behavior Active: change device behavior

10 | pvisi www.fi.muni.cz/crocs

CR& CS

Recent Practical Attacks

November 13, 2019 October 3, 2019

Researchers Discover ECDSA
TPM-FoIL Key Recovery Method

TPM MEETS TIMING AND
LOTTICE ATTACKS

May 28, 2020

LadderLeak: Side-channel security flaws
exploited to break ECDSA cryptography

December 12, 2019

Intel’s SGX coughs up crypto keys when
scientists tweak CPU voltage

Install fixes when they become available. Until then, don't sweat it.

SCA Titan: January 7, 2021

11 | pvisi www.fi.muni.cz/crocs

CR& CS

Side Channels
 Time @

* Power f

 Electro Magnetic Emanations WF
. Light @

- Sound ¢

- Temperature @L

12 | pvisi www.fi.muni.cz/crocs

CR& CS

What can be attacked & why?

* Type of device?
* What kind of primitive?
« How much control do you have?
 What can you access?

What would be the attacker’s goal?
* What is your goal?

Where is the money?

13 | pvisi www.fi.muni.cz/crocs

CR& CS

14 | pvisi www.fi.muni.cz/crocs

CR& CS

Some Other Practical Setups

DPA setup with ARM
- CortexM4

- Sl 210, BOBUNRBER
\ . .Cyb.lbc;'?l' .
- s2d q° &
v . . »
1y 98 ONKURA-G &
R ¢ ” “.-s l .;* - . . (@ o L3N
S———— ‘ AR
3 mihhE
: ! ~

82 e

mm.

15 | pvisi www.fi.muni.cz/crocs

CR& CS

Actual (overcomplicated?) setup

o Amplifier
Oscilloscope — "_”,,,,———— PS
Laptop:
aeistion + =1 Power Isolator
analysis
Target
Amplifier
Isolator
Low Pas PS
Analog Filter
EM Probe Com. Isolator

Batteries

FTDI Cable

Trigger

16 | pvisi www.fi.muni.cz/crocs

CR& CS

Simple Power Analysis (SPA) on RSA

ModExp (c) {

A=1

for (i =n-1; i=0;i—)
A=A2modN
if (d;==1)

A=A*cmodN

end if

end for

Return A = c¢mod N

18 | pvisi www.fi.muni.cz/crocs

Probe

“By carefully measuring the amount of time required to perform
private key operations, attackers may be able to find [...] RSA

Q

N

T

Diffie

iming
-Hellma

Attacks on Implementations of

n, RSA, DSS, and Other Systems

1996.

keys.”
10 1000 100 10
JsIls|sMls|s|s|s sss.s

CR& CS

Differential (Correlation) Power Analysis

User: 8 PRCRFIRW WU WW W HMH -
random B [T~ e = e
+ .
< | e
1 Iv

Guess d bits target state

f; = Selection Function(random inputs, d, target state)
HW of a register
HD between current and previous register state

* ID model (value of a register)

fi = {0 if HW < 16 fi = HW (reg_state)

1 if HW > 16

DPA = Difference of Means

CPA = Pearson correlation

19 | pvisi www.fi.muni.cz/crocs

CR& CS

Profiled Attacks

* Problems with the above approaches: Controlled Attacked
- can we attack the key directly? unprotected device protected device

* we often do not get many traces with the
same secret

* can we use an unprotected device of the
same model?

* (Possible) Solution:
* We profile, i.e. template the unprotected device
* We use the profile to break the protected device

* Procedure:

1. Choose a model that describes the power consumption
2. Profile the unprotected device to create the template (Template Building)
3. Use the template to break the protected device (Template Matching)

* The same steps are always performed but the model can be different.
* So often we will not learn the secret but the hamming weight of the secret.

* Neural Networks can be used instead of Template Attacks
 Attacking Single Trace or Multiple Traces? Both are possible.

www.fi.muni.cz/crocs

CR& CS

Goals of Fault Injection

« The goal is to change a critical value or to change the flow
of a program.

 Faults can be injected in several ways:

— Power glitches can disturb the power supply to the processor, resulting in
wrong values read from memory.

— Optical glitches with laser can force any elementary circuit to switch,
enabling the attacker to achieve a very specific change of data values or
behavior.

— Clock manipulation by introducing a few very short clock cycles which may
lead to the device misinterpreting a value read from memory.

— Cutting the power to the processor while performing important computations,
hoping to either prevent the system from taking measures against a detected
attack or get the system into a vulnerable state when the power is back.

 Differential Fault Analysis (DFA)

CR& CS

Fault Injection Example:
the “unlooper” device

22 | pvi81 www.fi.muni.cz/crocs

CR& CS

Fault Injection Example: the “unlooper” device
Warm-up question (1): where to glitch?

void entry() {
void* start 0x80000000 ;
void* length = @x00400000;

serial puts("Start Secure Boot...\n");

loadOSFromHardDrive(start);

if (! authenticateOS(start,length))
do {} while(1);

serial_ puts("Run 0S\n");

boot next_stage(start);
//starts executing at the address start

23 | Pvi81 www.fi.muni.cz/crocs

CR& CS

RSA-CRT: Differential Fault Analysis

Optimization of computing a signature giving about 3 or 4-fold speed-up

Precompute the following values:
— Find d, = d (mod p-1), computed as d, = e* (mod p-1)
— Find d, = d (mod g-1)
— Compute iy = g* (mod p)
Computations using m, =m (mod p) and m, = m (mod q)
Signature or encryption (forgetting about hashing):
— s,=m% (mod p) {E— 8
— 54,=m% (mod q) —
— Garner’s method (1965) to recombine s, and s,
* S=5,+q " (ig(Sp — Sg) (Mod p))
Due to a limited time, we need to skip the math details on how to recover
p and g, but it is possible with one fault!

— If you are interested, ask me after the seminar; it is a so-called Bellcore attack, see for
example: https://eprint.iacr.org/2012/553.pdf

24 | pvi81 www.fi.muni.cz/crocs

https://eprint.iacr.org/2012/553.pdf

CR& CS

How to protect against FI?

* You have to check that the operations was correctly
executed, for example:

— Duplication of operations;

— For signature generation you can verify the result

— Some SCA countermeasures will work even for Fl
« But not all

25 | pvis1 www.fi.muni.cz/crocs

CR& CS

Warm-up Question (2):
Software for PIN code verification

Input: 4-digit PIN code
Output: PIN verified or rejected
Process CheckPIN (pinf[4])
int pin_ok=0;
if (pin[0]==5)
if (pin[1]1==9) « What is the problem here?
if (pin[2]==0 What are the execution times of
] the process for PIN inputs?
N - [0,1,2,3], [5,3,0,2], [5,9,0,0]
B * The execution time increases as

we get closer to
end « [5,9,0,2]

if (pin[3

end
return pin_ok;
EndProcess

26 | Pvi81 www.fi.muni.cz/crocs

CR& CS

Warm-up Task — parity check for DES key

public static boolean checkParity (bytel[lkey, int offset) {
for (int 1 = 0; i < DES_KEY LEN; i++) { // for all key bytes

byte keyByte = key|[i + offset];

int count = 0;
while (keyByte != 0) { // loop till no ‘1’ bits left
if ((keyByte & 0x01) != 0) {

count++; // increment for every ‘1’ bit
}
keyByte >>>= 1; // shift right
}
if ((count & 1) == 0) { // not odd

return false; // parity not adjusted

}

return true; // all bytes were odd

27 | Pv181 www.fi.muni.cz/crocs

CR& CS

Warm-up Task — parity check for DES key

cont’d
g IR Lu,mwu U,M\m I
:4 HJ | *ul' ULUHI “l i J f" |)N ““JF I

0 5 10 15 20 25 30

Tell me what is the key ©

28 | pvis1 www.fi.muni.cz/crocs

CR& CS

Warm-up Task — parity check for DES key

cont’d

‘*1 1] Key parity check

VI uﬂA u”ﬁvu u%JuJu ﬁMuU u}

ﬁ‘ \W ’Hf | | i | “ ;MF |

1010001 0001 11110111 110001
0x45 0x08 OXEF 0x23

29 | pvis1 www.fi.muni.cz/crocs

CR& CS

Question 1:
faster and more secure modexp - Montgomery ladder

Xg=Xj X;=X2
for j=k-2to 0 {

ifxdi_:)? sy Both branches with the same
alse 0T num_ber and type of ope_rations
Xo=Xo¥Xq; Xq{=X,2 (unlike square and multiply on
X;=X; mod N : :
%o=x. mod N previous slide)
}
return Xx,

Is it constant-time & secure? Why?

30 | pvis1 www.fi.muni.cz/crocs

CR& CS

Question 2:
even maore secure modexp

Xg=Xj; X;=X2
for j=k-2to 0 {

b=d, Memory access often is not
X(l-b)=X0*2|(1I<I Xp=Xp? constant time!
X{=X; MO : :
%o=x. mod N Especially in the presence of
3} caches.
return x,

Is it constant-time & secure? Why?

31 | pvisi www.fi.muni.cz/crocs

CR& CS

Question 3:
even maore secure modexp

Xg=Xj; X;=X2
for j=k-2to 0 {

b=d, Memory access often is not
X(l-b)=X0*2|(1I<I Xp=Xp? constant time!
X{=X; MO : :
%o=x. mod N Especially in the presence of
3} caches.
return x,

Is it constant-time & secure? Why?

32 | pvi81 www.fi.muni.cz/crocs

CR& CS

Question 4:
even more more secure modexp

Xo=Xj x1=X2; sw =0
for j=k-2to 0 {
b=d, :
cswap(Xo, X1, bBsw) Constant-time? Depends on the
woed cswap... but it can be ©
x,=x, mod N Other-side channels? Depends ©
Xo=Xo mod N
}

return X,

Is it constant-time & secure? Why?

33 | pPvi81 www.fi.muni.cz/crocs

CR& CS

Question 5:
Arithmetic Cswap — constant-time?

1| void fe25519_cswap(fe25519% inl, fe25519% in2, int condition)
21 {

3 int32 mask = condition;

4 uint32 ctr;

5 mask = -mask;

6 for (ctr = 0; ctr < 8; ctr++)

7 {

e uint32 vall = inl->as_uint32[ctr];
9 uint32 val2 = in2->as_uint32[ctr];
10 uint32 temp = vall;

11 vall ~= mask & (val2 ~ wvall);

12 val2 = mask & (val2 ~ temp);

13 inl->as_uint32[ctr] = wvall;

14 in2->as_uint32[ctr] = val2;

15 }

16| }

34 | pvis1 www.fi.muni.cz/crocs

CR& CS

Question 5:

Arithmetic Cswap — secure against other side-channels?

Scalar multiplication trace

255

|

1

1
I=-r=-=

1

codlocoboo

1

1
-Tr-aT-TrT -

I

= jterations

1
1
e -
1

Apply clustering (e.g. k-means), Template Attack, Deep Learning
to the set of 255 samples:

sample value (V)

bits 0

bits 1

sample index

255 Samples

35 | pvis1 www.fi.muni.cz/crocs

CR& CS

Message and exponent blinding

c = m%mod N

1l.m,.=m.r®modN
2.d.=d+1r*¢@pn)
3.¢c, =m, " modn
4.c=c.*rmodn

message blinding
exponent blinding

blinded exponentiation
message “unblinding”

The sequence of operations (S, M) is related to the exponent bits.

However:

 If d is random: the sequence of exponent bits changes for every RSA execution
* If m is random: Intermediate data is random (masked) — hardly predicted!

DPA is based on the prediction of intermediate data.

Thesis: Any side-channel attack requiring multiple traces are repelled by message and exponent blinding

countermeasures.

For ECC there are corresponding countermeasures: coordinate blinding, scalar blinding, blinded scalar

multiplications, and no unblinding ©

36 | Pvis1 www.fi.muni.cz/crocs

CR& CS

Message and exponent blinding for CRT?

c = m%mod N

1l.m,.=m.r®modN message blinding
2.d.=d+1*¢@(n) exponent blinding
3.¢c, =m, " modn blinded exponentiation
4.c=c,*rmodn message “unblinding”

Message blinding is the same!
Exponent blinding needs to be done twice:

s, = m% (mod p) = m%*"®-H (mod p)
sq = m% (mod q) = m%*" @D (mod q)

That does not stop Fl attacks!

37 | pvis1 www.fi.muni.cz/crocs

CR& CS

SCA&FI-protected Elliptic Curve library

* A protected library for ECDH

— key exchange & session key establishment
— It will be published in TCHES2023 volume 1 and
* presented at Ches 2023 in Prague

* Code library available from GitHub

o Useful links:
— https://eprint.iacr.org/2021/1003
— https://qgithub.com/sca-secure-library-sca25519/sca25519

« Taking care of ECDSA:

— https://eprint.iacr.org/2022/1254
— | will add it to the repository later on.

38 | pvis1 www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254

CR& CS

What to do first

* Download (or clone) the code from:
— https://github.com/sca-secure-library-sca25519/sca25519

* |f you do not know C then it will be tricky but in this
case try to be intuitive.

« Task 1: have a look at the STM32F407-unprotected:
— Please find the starting point.
— Please find the scalar multiplication function.
« And the scalar multiplication loop.
— What the code is doing?

www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519

CR& CS

Task 1: Unprotected Crypto Library

File Edit Selecton Find View Goto Tools Project Preferences

main.c

FOLDERS
sca25519
common
figs
hostside
libopencm3
STM32F407-ephemeral
STM32F407-static
STM32F407-unprotected
crypto
[main.bin
/% main.c
/+ main.d
/+ main.h
/+ Makefile
/+ stm32f4_wrapper.c
/+ stm32f4_wrapper.d
/+ stm32wrapper.h

O i

.gitmodules
LICENSE
> README.md

test.c
test.d
test.h

~/GIT/sca25519_github/sca25519/STM32F407-unprotected/main.c (sca25519) - Sublime Text
Help

www.fi.muni.cz/crocs

CR& CS

Task 1: Unprotected Crypto Library cont’d

> where we explicitly double

while (stat >=0) {
byteNo = () (state.nextScalarBitToProcess >> 3);
bitNo = () (state.nextScalarBitToProcess & 7);
bit;
swap;

bit = 1 & (state.s.as uint8 t[byteNo] >> bitNo);

swap = bit ~ state.previousProcessedBit;
state.previousProcessedBit = bit;
(&state, swap);
(&state);
state.nextScalarBitToProcess--;

www.fi.muni.cz/crocs

CR& CS

Protected Crypto Library — other
Implementations

Ephemeral & Static increase complexity

10 mWy Static Scalar Multiplication

www.fi.muni.cz/crocs

CR& CS

Task 2: Ephemeral Crypto Library

« Have a look at the STM32F407-ephermeral (and
STM32F407-static):

— Find scalar multiplication functions and the scalar multiplication loops

* Try to find one side-channel countermeasure and one fault
Injection countermeasure. Have also a look at the list of
Implemented countermeasures in:

— https://tches.iacr.org/index.php/TCHES/issue/view/312

« Can you explain the countermeasures?

- If you have time, then try to find one or two more
countermeasures

Remark: do not worry — this is a hard exercise.

www.fi.muni.cz/crocs

https://tches.iacr.org/index.php/TCHES/issue/view/312

CR& CS

Task 2: Ephemeral Crypto Library - Fl

| counter) ;

(&state.zp))

goto fail; //

// Optimize stack en implementing
(&st
state.zq, D ; - n v
(&state.xp, &state.xp, &state.zp); (Sstate ‘Kp)“
(&state.xp);
(fid counter); //
(&state.xB, &state.xp); -

i
fail:
retval |

Find the same countermeasure pelse ¢
. . . . retva 0;
In the static implementation. ;

(State‘xp.as_uints_t, 32);

(r, &state.xp);

return retval;

www.fi.muni.cz/crocs

CR& CS

Task 2: Ephemeral Crypto Library - SCA

vold (
ST curve255191adderstepWorkingState *pState, wordwithConditionBit,
bitNumber) {

randomDataBuffer[2] = {0, 0};
(()randomDataBuffer, sizeof(randomDataBuffer)):

// first combine the scalar bit with a random value which has
// the bit at the data position cleared

mask = randomDataBuffer[D] (~(1 << bitNumber));
wordwWithConditionBit "= mask;

'/ Arrange for having the condition bit at bit #0 and random data elsewhere.
{wordW1thCond1t10n51t bitNumber) ;

(wordwWithConditionBit, pState->xp.as uint32 t,
pState->xq.as uint32 t, randomDataBuffer([1]);
(wordwWithConditionBit, pState->zp.as uint32 t,
pState->zg.as uint32 t, randomDataBuffer[1]);

45 www.fi.muni.cz/crocs

CR& CS

Task 2: Ephemeral Crypto Library — SCA
cont’d

vold ' WithRanaom/ . {
ST curve25519ladderstepWorkingState *pState, wordwWithConditionBit,
bitNumber) {
randomDataBuffer([2] {06, 0};
((*) randomDataBuffer, sizeof(randomDataBuffer));

s +he cr 1 A 4 1+h A elenm valiiie hi1rh hac
mopine thne sCalalr D1T wlth a rando valLue wWhli(1asS

1A

the

|

Lmask » ran ; << bitNumber)):;
wordwWwithConditionBit "= mask;

ranae

A far h the condition bit at bit

(WérdWithCohditiohBit,'bifNumbér)}

(wordwithConditionBit, pState->xp.as uint32 t,
pState->xq.as uint32 t, randomDataBuffer([1]);
(wordWwithConditionBit, pState->zp.as uint32 t,
pState->zq.as uint32 t, randomDataBuffer([1]);

46 www.fi.muni.cz/crocs

CR& CS

Task 3: Static Crypto Library — SCA

* Find scalar splitting (similar to blinding):
1. Generate 64-bit r and computer r-1
2. Compute P’ = [r*k]*P
3. Compute [r]*P’ = [kK]P

» Does it work?

* Find this countermeasure In the static SCA code:
Steps 2 and 3.

www.fi.muni.cz/crocs

CR& CS

Exercise: Protected Crypto Library 3

. st 2
(state.nextScalarBitToProcess >=
limbNo = @;
bitNo = 0O;
=f MULTIPLICATIVE CSWAP

limbNo = ()(state.nextScalarBitToProcess 5)
bitNo = state.nextScalarBitToProcess Ox1f;
/] ## 1g. s 22 a
(&state, state.s.as _uint32_t[limbNo],
bitNo);

{
limbNo = () (state.nextScalarBitToProcess S5
T ITOH_COUNTERMEASURE

temp = state.s.as uint32_ t[limbNo] itoh.as uint32 t[limbNo];

(&state, &temp);
state.s.as uint32 t[limbNo] = 1;
itoh.as uint32 t[limbNo] = 1;

(&state, &state.s.as uint32 t[limbNo]);

(state.nextScalarBitToProcess ==
(&state);
(fid_counter);

MULTIPLICATIVE_CSWAP
ITOH_COUNTERMEASURE

(&state, uint32 t[limbNo],

bitNo); 5

p 26

ITOH_COUNTERMEASURE
(&state, &itohShift.as uint32_ t[limbNo]);

48

le (state.nextScalarBitToProcess

1imbNo
bitNo =

f MULTIPLICATIVE CSWAP

limbNo = () (state.nextScalarBitToProcess 55
bitNo = state.nextScalarBitToProcess ox1f;

(&state, state.r.as uint32 t[limbNe],
bitNo);

limbNo = () (state.nextScalarBitToProcess 55
f ITOH COUNTERMEASUREG64
temp = state.r.as_uint32_t[limbNo] itoh64.as uint32 t[limbNo];
(&state, &temp);
state.r.as uint32 t[limbNo] =1
itoh64.as_uint32 t[limbNol

(&state state.r.as uint32 t[limbNo])

(state.nextScalarBitToProcess

(&state);
(fid_counter);

MULTIPLICATIVE CSWAP
ITOH_COUNTERMEASUREG4
(&state, ft.as uint32 t[limbNo],
bitNe); // s

ITOH_COUNTERMEASURE64
state, &itoh64shift.as uint32_t[limbNol);

state.nextScalarBitToProcess

www.fi.muni.cz/crocs

Efficiency Demo (Optionally)

www.fi.muni.cz/crocs

CR& CS

Demo Instructions

* Open in a browser: https://github.com/sca-secure-
library-sca25519/sca25519

« And follow the instructions from there
— There are some issues related to the libopencma3 library

* You need a Discover board and an FTDI cable

 Qit clone https://qgithub.com/sca-secure-library-
sca25519/sca25519.qit

www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519.git
https://github.com/sca-secure-library-sca25519/sca25519.git

CR& CS

Assignment 9 — Countermeasures

« This is a programming assignment. Please upload your
scripts/code and the required analysis via the course webpage.

« The deadline for submission is Dec. 13, 2023, 8:00.
— -3 points for each started 24h after the deadline.

* Your code should be contained in one .py file. Please name the
submission file as <uco_number>_hw9.zip. Put there both the

python code, the analysis document, and all data produced
during analysis (as long as the size is reasonable).

« The code must contain comments so that it is reasonably easy
to understand how to run the script for evaluating each answer.

51 | pvisi www.fi.muni.cz/crocs

CR& CS

Assignment 9 - Tasks

Task 1: protect the CRT implementation with exponent blinding in the function TCR_ protected! First, test
and then modify the code (the result should be the same). In a separate report (max 2 pages), write why
the countermeasure works (does not affect the correctness of the result). Then, perform a useful analysis
of the efficiency cost of the countermeasure (repeat the experiment a number of times and report a
percent increase). [3.5 points]

Task 2: protect the CRT implementation with message blinding! Note that this will require knowledge of e.
In the document, write why the countermeasure works. Then, perform a useful analysis of the cost of the
countermeasure. [3.0 points]

Task 3: protect the CRT implementation against fault injection! Any countermeasure is OK. In the
document, write why the countermeasure works. Then, perform a useful analysis of the cost of the
countermeasure. [2.5 points]

Task 4: combine all the countermeasures and measure the time of all additional countermeasures and
how well they work. Write that in the report. [1 points]

Bonus (3 points):

(a) Instead of exponent blinding, implement exponent splitting. How does it compare to blinding? [1 point]
(b) Implement another extra countermeasure (any, it can be either SCA or FI). What is its cost? [1 point]
(c) Implement yet another extra countermeasure (any, either SCA or Fl). What is its cost? [1 point]

Remark: we are securing Python code and, for the sake of this exercise, assume that the code is directly
executed by the processor (and not interpreted etc.)

Consultation: Monday at 13:00 in A406.

Good luck!!!

52 | pvis1 www.fi.muni.cz/crocs

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Outline
	Slide 3
	Slide 4: Recall: Digital signature scheme
	Slide 5: Recall: RSA vs. ECC
	Slide 6: Why is hardware security important?
	Slide 7
	Slide 8
	Slide 9: Cookies Example
	Slide 10: Passive vs Active Side Channels
	Slide 11: Recent Practical Attacks
	Slide 12: Side Channels
	Slide 13: What can be attacked & why?
	Slide 14: Practical Setup Spectrum
	Slide 15: Some Other Practical Setups
	Slide 16: Actual (overcomplicated?) setup
	Slide 18: Simple Power Analysis (SPA) on RSA
	Slide 19: Differential (Correlation) Power Analysis
	Slide 20
	Slide 21: Goals of Fault Injection
	Slide 22: Fault Injection Example: the “unlooper” device
	Slide 23: Fault Injection Example: the “unlooper” device Warm-up question (1): where to glitch?
	Slide 24: RSA-CRT: Differential Fault Analysis
	Slide 25: How to protect against FI?
	Slide 26: Warm-up Question (2): Software for PIN code verification
	Slide 27: Warm-up Task – parity check for DES key
	Slide 28: Warm-up Task – parity check for DES key cont’d
	Slide 29: Warm-up Task – parity check for DES key cont’d
	Slide 30: Question 1: faster and more secure modexp - Montgomery ladder
	Slide 31: Question 2: even more secure modexp
	Slide 32: Question 3: even more secure modexp
	Slide 33: Question 4: even more more secure modexp
	Slide 34: Question 5: Arithmetic Cswap – constant-time?
	Slide 35: Question 5: Arithmetic Cswap – secure against other side-channels?
	Slide 36: Message and exponent blinding
	Slide 37: Message and exponent blinding for CRT?
	Slide 38: SCA&FI-protected Elliptic Curve library
	Slide 39: What to do first
	Slide 40: Task 1: Unprotected Crypto Library
	Slide 41: Task 1: Unprotected Crypto Library cont’d
	Slide 42: Protected Crypto Library – other implementations
	Slide 43: Task 2: Ephemeral Crypto Library
	Slide 44: Task 2: Ephemeral Crypto Library - FI
	Slide 45: Task 2: Ephemeral Crypto Library - SCA
	Slide 46: Task 2: Ephemeral Crypto Library – SCA cont’d
	Slide 47: Task 3: Static Crypto Library – SCA
	Slide 48: Exercise: Protected Crypto Library 3
	Slide 49: Efficiency Demo (Optionally)
	Slide 50: Demo Instructions
	Slide 51: Assignment 9 – Countermeasures
	Slide 52: Assignment 9 - Tasks

