

PV198 - I²C

One-chip Controllers

Daniel Dlhopolček, Marek Vrbka, Jan Koniarik, Oldřich Pecák, Tomáš Rohlínek, Ján Labuda, Jan Horáček, Matúš Škvarla

Faculty of Informatics, Masaryk University

7/2023

Introduction

12C

FRDM-K66F I²C

Accelerometer & Magnetometer

Application

Homework

• PV198 - I²C • 7/2023

Introduction

Intro

- Switch the branch to *Week_07*!
- Discussion of HW6

Introduction

NXP CUP

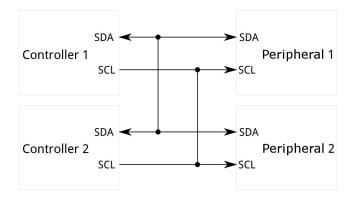
- International competition with autonomous cars
- Working on a group project
- Diverse set of tasks, for example:
 - Parse data from sensors
 - Constructing platform holding sensors
 - Design controlling algorithm
- Last year finals
- Contact:
 - Email: *jan.labuda@mail.muni.cz*
 - Discord: Ján Labuda / Northeus

12C

Embedded communication buses

- SPI Serial Peripheral Interface
- I²C Inter-Integrated Circuit
- UART Universal asynchronous receiver / transmitter
- CAN Controller Area Network
- 1-Wire
- RS-485
- RS-232

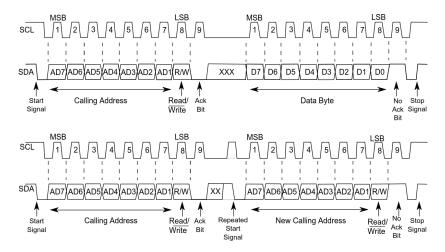
"eye-squared-C"


- I²C = Inter-Integrated Circuit
- Invented in 1982 by Philips Semiconductors (now NXP Semiconductors)
- Applications: intra-board communication
 - Peripherals
 - Sensors

I²C Principle

2 wires

- 1. SCL serial clock
- 2. SDA serial data
- Terminology: controller (= master), target (= slave)
- Multi-controller & multi-target
- 100 kbit/s 5 Mbit/s
- 7-bit addressing / 10-bit addressing
- Synchronous
- Half-duplex


I²C Schematic

Source: https://learn.sparkfun.com/tutorials/i2c/all

12C

I²C Message

Source: K66 Sub-Family Reference Manual, Figure 58-2.

I²C Principles

- SCL & SDA are pulled high by pull-up resistors.
- ACK bit is set by receiving device (active low for acknowledged).
- Master starts with address transmission if target exists, it will respond with ACK bit (active low).
- Controller then continues in either transmit or receive mode (according to the read/write bit it sent), and the target continues in the complementary mode (receive or transmit, respectively).
- Bits are sent most significant bit first.

FRDM-K66F I²C

- 4 I²C modules
- Address match wakeup in low-power modes
- SMBus support
- DMA support
- Functions to use:
 - BOARD_Accel_I2C_Receive
 - BOARD_Accel_I2C_Send

Accelerometer & Magnetometer FXOS8700CQ

FXOS8700CQ

Sensor placed directly on FRDM-K66 development board

Datasheet

- See 10.1. I²C interface
- See 14. Register description
- 3-axis linear accelerometer + 3-axis magnetometer combined into a single package

Accelerometer & Magnetometer

FXOS8700CQ I²C Connection

FXOS8700CQ connected to I²C bus and 2 GPIO pins

FXOS8700CQ	K66F Connection
SCL	PTD8/I2C0_SCL
SDA	PTD9/I2C0_SDA
INT1	PTC17
INT2	PTC13

Source: FRDM-K66F Development Platform User's Guide, Table 6.

Seminar task

- Create an application that reads accelerometer output data registers.
- Print register values into console.
- Bonus
 - Calculate tilt angle from received values.

Step-by-step guide

- 1. Download template from study materials in IS.
- Look at initializeAccel function implementation, pins routing & peripherals.
 - Check if everything is set-up correctly.
- 3. Read values from sensors in main while loop.
- 4. Use functions:
 - BOARD_Accel_I2C_Receive
 - BOARD_Accel_I2C_Send
- 5. For now, ignore setupOrientationDetection functions, it will be used in homework.

Homework – Orientation Detection

- Create an application that detects orientation of the board (the same way as mobile phones do).
- Use the feature of the sensor do not calculate it in the MCU from XYZ register values.
- Use interrupt from sensor.
- Print current orientation into console when orientation of the board changes.
- Use provided template, write your code into function setupOrientationDetection.

MUNI FACULTY OF INFORMATICS