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Introduction
• Quantum PC → RSA, ECDSA, ... → PQC → new algorithms 
• Standardization of PQC (e.g. NIST) 
• Next step: 
• PQ support in all system and architecture layers 
• Ensure functionality, compatibility, interoperability 

• My activities: 
• Exploring current options and state-of-the-art 
• Focus on engineering aspects of PQ protocol implementations 
• Gather experience, remarks, and tips
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Post-Quantum Algorithms
• NIST standardization efforts (2016-now) 
• Round 4: 

• Digital signatures: 
• Dilithium, Falcon (lattice-based) 
• Sphincs+ (hash-based) 

• Key Encapsulation Mechanisms: 
• Kyber (lattice-based) 

• More algs.: TBA ("On ramp") 
• other evaluation efforts (BSI, ENISA, ...) → possibly other algorithms
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Our experience with PQC 
implementation

PQ versions of Web-eID, CDOC2, ASICE, IVXV, TOPCOAT
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Project with direct implementation
• PQ-Web-eID 
• authentication framework for web applications 
• Estonian electronic ID cards + state web services 
• dig. signatures, smart cards → ESP32 programmable microcontroller 

• PQ-CDOC2 
• Estonian standard for securing and exchanging data 
• KEMs, problems with TLS 

• PQ-ASiC-E 
• (almost Estonian) standard for digitally signed container of data
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Project with problematic implementations
• PQ-IVXV 
• electronic voting system 
• preparation of infrastructure, PQ-OCSP, PQ-TSA 
• dig. signatures are OK, but vote encryption is problem 

• elGamal → completely new PQ protocol (lattice-based) 
• TOPCOAT 
• threshold digital signature scheme 
• almost no existing implementations → completely new PQ protocol 

(lattice-based)
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Go-to libraries
• PQClean (C) 
• Cleaned aggregation of NIST-submitted algorithms 
• Source of source-code (i.e. not a library) 

• libOQS (C) 
• + wrappers for C++, Python, Java, Go, .NET, and Rust 
• + applications built with libOQS (OpenSSL, OpenSSH, OpenVPN forks) 

• BouncyCastle (Java), rustpq/pqcrypto (Rust), pqm4 (C, Cortex-M4), 
botan-pq (C++) 
• custom wrappers
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https://github.com/PQClean/PQClean
https://github.com/open-quantum-safe/liboqs
http://www.apple.com
https://github.com/rustpq/pqcrypto
http://www.apple.com
https://github.com/ait-crypto/botan-pq


PQ ASN.1 structures
• No standards exist yet → NIST requires raw bytes 
• RFC drafts 
• private and public keys with alg. specific parameters 
• e.g. DilithiumPrivateKey (contains nonce, tr, s1, s2, t0, etc.) 

• PQ Object Identifiers (OIDs): 
• OQS defined their own (most commonly used so far) 
• BouncyCastle expanded with KEMs
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https://github.com/open-quantum-safe/oqs-provider/issues/89
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#oids
https://github.com/bcgit/bc-java/blob/91c3c6018ab353f653749b9b56d6de384a31ec3c/core/src/main/java/org/bouncycastle/asn1/bc/BCObjectIdentifiers.java


JSON Web Algorithms (RFC 7518)
• Usage:   JW Signature 
• Format:   (DIGSIG + HASH identification) 
• Example:   ES384 = ECDSA using P-384 curve and SHA-384 
• No RFC drafts for PQ JWAs 
• RFC draft for PQ JW Encodings 
• e.g. CRYDI5 = CRYSTALS-Dilithium parameter set 5 
• HASH? → SHA-512 

• RFC drafts for PQ JW Object Signing and Encryption (JOSE) 
• alg. specific parameters encoding
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https://www.ietf.org/archive/id/draft-prorock-cose-post-quantum-signatures-01.html
https://datatracker.ietf.org/doc/draft-ietf-cose-dilithium/


Hybrid mode (PQ + classic crypto)
• Longevity of data confidentiality + protection against emerging threats in 

PQC 
• Concatenation, sequential modes 
• Ghinea et al. 

• both have security issues 
• novel method to improve unforgeability of ECDSA+PQ signatures 

• RFC Draft for hybrid KEM in TLS1.3 follows concatenation 
• Cloudflare and Google Chrome follow RFC draft using concatenation 

(X25519 + Kyber)
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https://eprint.iacr.org/2022/1225
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/


General remarks 

Preparations, technological constraints, implementation
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Identifying relevant locations
• Identify all PKI objects through their lifetime 
• Beware of MTUs 
• bigger objects, variable sizes (Falcon) 

• Beware of changing data formats 
• ASN1, Base64, PEM, JOSE, other...
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BPMN example
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Technological constraints
• Assess current boundaries of the system 
• Increased performance, memory, and storage overhead 
• Limited devices and slow networks 

• Protocol adjustments: 
• streaming public keys and signatures into memory 
• key encapsulation instead of digital signatures (credit cards) 
• allocate all objects in heap instead of limited stack memory (our case)
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https://doi.org/10.1007/978-3-030-81293-5_12
https://link.springer.com/book/10.1007/978-3-031-22829-2


Implementation
• Start at the beginning of the data lifecycle 
• Implement PQC one step at a time 
• Implementation is still not straight-forward 
• Extensions, adjustments, adaptations of crypto libraries 
• Create your own wrappers using SWIG 
• Expect future changes - standardization is not over!
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https://swig.org/


Embedded devices
• Smart cards are not suitable → 

LilyGO T-Display-S3  
• Problematic memory management: 

• Limited to 8 KB of stack RAM 
• PQClean allocates to a stack a 

lot 
• Solved by adjusting PQClean code 

by using: 
• malloc and free functions 
• std::unique_ptr (C++ v11)



libOQS extensions
• Available wrappers for C++, Python, Java, Go, .NET, and Rust 
• PHP? → SWIG wrapper generator! 

• C/C++ interface definition required 
• → liboqs-php, liboqs-python, liboqs-go 

• Some remapping was required: 
• PHP string ↔ C++ uint8_t* 
• Python bytes ↔ C++ uint8_t*
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PQ in PHP
• OpenSSL usage → OQS-OpenSSL 
• (v1 forks discontinued) 
• v3 extension provider: 

• extends regular OpenSSL@3 
• PHP algorithms IDs hardcoded for DSA, DH, RSA, and EC  

• some built-in functions do not require algID (e.g. openssl_verify()) 
• my notes on OQS-OpenSSL in PHP 

• PHPSecLib → new PQC-PHPSecLib fork 
• OQS-OpenSSL or liboqs-php (based on availability)
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https://github.com/Muzosh/OQS-openssl-in-PHP


PQ in BouncyCastle (v1.74+)
• Not well documented 
•   
• org.bouncycastle.pqc.* packages 

• Works with actual algorithm parameters from ASN1 drafts 
• vs raw bytes in libOQS  
• e.g. KyberPublicKeyParameters has t and rho
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PQ Java Keytool
• keytool = command for managing a keystore of cryptographic objects 
• PQ BouncyCastle → PQ Java Keytool 
• e.g. to generate .p12 with Dilithium keypair and self-signed certificate:
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keytool \ 
-providerpath bcprov-jdk18on-175.jar \ 
-provider org.bouncycastle.pqc.jcajce.provider.BouncyCastlePQCProvider \ 
-genkeypair \ 
-keyalg Dilithium5 \ 
-alias cdoc20-client-pqc-CA \ 
-keystore cdoc20clientpqcCA.p12 \ 
-storepass passwd \ 
-sigalg Dilithium5 \ 
-dname "CN=cdoc20-client-pqc-CA,OU=ISRI,O=CyberneticaAS,L=Brno,S=Czechia,C=CZ"



This week's news
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• Post-Quantum Cryptography 
conference 2023 by PKI Consortium 
• Recording on YT 
• PQC Migration Handbook 
• Experiments on embedded devices 

are unrealistic 
• FIDO2 tokens are highly limited 
• PQC on mobile phones might require 

new HW co-processors 
• banking is XY years behind



Conclusions
• Implementing PQC today is... 

• ...complicated: 
• different libraries → different approaches and documentation level 
• computational constraints, adaptation and tweaking 
• standardization is not finished (and complete - MPC, ZKP, etc..) 

• ...doable: 
• authentication framework, crypto systems for encryption, signing containers, etc. 

• ...worth it: 
• long-term data protection, experience 

• ...helpful: 
• big space for open-source PQ contributions, reduce confusion
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https://cyber.ee/ 
info@cyber.ee 
cybernetica 
CyberneticaAS 
cybernetica_ee 
Cybernetica

Thank you for listening!

Petr Muzikant, petr.muzikant@cyber.ee

References: 
• links in presentation 
• PQ authentication framework 
• Notes on PQC in PHP 
• write me an email!
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