IA159 Formal Methods for Software Analysis

Program Slicing and Points-to Analysis

Jan Strejcek

Faculty of Informatics
Masaryk University

Focus and sources

focus
m slicing via dependence graphs
m points-to analysis
m static single assignment (SSA)
m data dependencies
m control dependencies

sources

m M. Chalupa: Program Slicing and Symbolic Execution for Verification, PhD
thesis, 2021.

m B.Alpern, M. N. Wegman, and F. K. Zadeck: Detecting equality of variables in
programs, POPL 1988.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 2/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 3/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

A typical slicing criterion is a specific statement or a set of statements. Sliced
program should preserve all executions of these statements, i.e., preserve the
reachability of these statements and all data they process.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 4/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

A typical slicing criterion is a specific statement or a set of statements. Sliced
program should preserve all executions of these statements, i.e., preserve the
reachability of these statements and all data they process.

m introduced in M. D. Weiser: Program Slicing, ICSE 1981

m the approach based on dependence graphs presented in K. J. Ottenstein and
L. M. Ottenstein: The Program Dependence Graph in a Software
Development Environment, SDE 1984

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 5/65

Applications of program slicing

m program debugging

m code comprehension

m code optimization including automatic parallelization
m software verification

...

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 6/65

Applications of program slicing

m program debugging

m code comprehension

m code optimization including automatic parallelization
m software verification

...

a typical application in software verification (implemented in Symbiotic)
find potentially erroneous statements by a cheap analysis
slice the program to preserve all executions of these statements
verify the sliced program

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 7/65

Simple example

Which statements are irrelevant for the assert?

z =z + 3;
if (z > 0) {
x =z + 1;
z = 3 x X;
} else {
y =z + 5;
X = X *x X — Z;
}
if (x > vy)
z = x - 1;
assert(x > 0);

QWO NOOOOP~WN =

— —

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 8/65

Simple example

Which statements are irrelevant for the assert?

1 z =2z + 3; 1 z = 3;

2 1f (z > 0) { 2 1if (z > 0) {
3 x =2z + 1; 3 x = + 1;

4 z = 3 x X; 4

5 } else { 5 } else {

6 y =z + 5; 6

7 X =X * X — Z; 7 X =X * X — Z;
8 } 8 1}

9 if (x > vy) 9

10 z = x — 1; 10

11 assert(x > 0); 11 assert(x > 0);

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 9/65

Basic slicing algorithm

build a dependence graph for the given program
m nodes are statements
m edges correspond to data and control dependencies

sliced program corresponds to the nodes that are backward reachable from
the slicing criterion(s)

intuitive meanings
m a statement r is data dependent on a statement w if there exists a program
execution where r reads a value from a memory that has been written by w

m a statement nis control dependent on a statement b if b is the closest point
where a program execution may go some way that misses n

m in practice, we compute overapproximations

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 10/65

Simple dependency graph

x =z + 1;

z = 3 * X;

} else {

y =z + 5;

X = X * X — Z;
}

if (x > vy)

z = x - 1;
assert(x > 0);

- QOWoOoO~NOOhA~WN =

—_

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 11/65

Simple dependency graph

1 z =2 + 35 1tz =z + 3

2 if (z > 0) {

3 x=1z+ 1; (2:if (z > 0))

4 z = 3 * X;

5 } else { 3x =z + 1 6:y =z + 5

6 y =z + 5;

;}x:x*x—z; (4:213*}() (7;X=x*x—zJ
9 if (x > vy) if

10 2z - x - 1 (Bir >)

11 assert(x > 0);

(10:z=x— l)

[11: assert (x > O)J

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 12/65

Simple dependency graph

x =z + 1;

z = 3 * X;
} else {

y =z + 5;

X = X * X — Z;
}
if (x > vy)

z = x - 1;
assert(x > 0);

- QOWoOoO~NOOhA~WN =

—_

11: assert (x > 0)

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 13/65

Simple dependency graph

x =z + 1;

z = 3 * X;
} else {

y =z + 5;

X = X * X — Z;
}
if (x > vy)

z = x - 1;
assert(x > 0);

- QOWoOoO~NOOhA~WN =

—_

11: assert (x > 0)

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 14/65

Simple dependency graph

x =z + 1;

z = 3 * X;
} else {

y =z + 5;

X = X * X — Z;
}
if (x > vy)

z = x - 1;
assert(x > 0);

- QOWoOoO~NOOhA~WN =

—_

11: assert (x > 0)

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 15/65

Simple dependency graph

x =z + 1;

z = 3 * X;
} else {

y =z + 5;

X = X * X — Z;
}
if (x > vy)

z = x - 1;
assert(x > 0);

- QOWoOoO~NOOhA~WN =

—_

11: assert (x > 0)

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 16/65

Simple dependency graph

”
2
3
4
5
6
7
8
9
0
1

assert(x > 0);

11: assert (x > 0)

w r is data dependent on w if there exists a program execution
> where r reads a value from a memory that has been written by w
b .. nis control dependent on b if b is the closest point
>n where the program may go some way that misses n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 17/65

Points-to analysis aka pointer analysis

How data dependencies look like?

int x;

int *p;

int *xqgj

x = 5;

&X;

qa = ps

*q = 7;
assert(x > 6);

ONOO O~ WOWN =
T
Il

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 19/65

How data dependencies look like?

int x;
int *p; 4:x =5
int *xqgj
X = 9 5:p = &x
p = &x;

a7

assert (x > 6);

ONOO O~ WOWN =

[8:assert(x > 6)]

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 20/65

How data dependencies look like?

1 int x;

2 int xp; 4% - 5

3 e

4 x=5; 5:p = &x

2 P X where this

7 d __p’7_ data dependency
= edge starts?

8 assert(x > 6);

7:*q=7

[8:assert(x > 6)]

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 21/65

How data dependencies look like?

int x;
int *p; 4:x =5
int *xqgj
X = 9 5:p = &x
p = &x;

q = pi points-to analysis
*qg = 7; needed

assert (x > 6);

ONOO O~ WOWN =

[8:assert(x > 6)]

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 22/65

Points-to analysis

m assigns to each pointer p the points-to set that contains all memory locations
p may point to

m memory locations are abstractions of concrete objects located in memory
during program execution

m often identified with allocation statements like 1: int x or 35:malloc (128)
B can represent more concrete objects, e.g., formalloc in cycle

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 23/65

Points-to analysis

m assigns to each pointer p the points-to set that contains all memory locations
p may point to

m memory locations are abstractions of concrete objects located in memory
during program execution

m often identified with allocation statements like 1: int x or 35:malloc (128)
B can represent more concrete objects, e.g., formalloc in cycle

m we use two additional memory locations

m null representing a pointer value NULL
B unknown saying that the pointer can point anywhere

m additionally, it tracks which memory locations represent one concrete memory
object and which are abstract

m can be computed by an abstract interpretation

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 24/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

1
2
3
4
5
6
7
8
9

10

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis

int vy;
int rdata = malloc (40);
int *p = &y;
if (y > 2) |
p = NULL;
} else {
p = data + 2;
}
int xgq = p;

25/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

1
2
3
4
5
6
7
8
9

10

int vy;
int rdata = malloc (40);

int *p = &y;
if (y > 2)
p = NULL;
} else {
p = data + 2;
}
int xgq = p;

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 26/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

1
2
3
4
5
6
7
8
9

10

int vy;
int rdata = malloc (40);

int *p = &y;
if (y > 2)
p = NULL;
} else {
p = data + 2;
}
int xgq = p;

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 27/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

1
2
3
4
5
6
7
8
9

10

int vy;
int rdata = malloc (40);

int *p = &y;
if (y > 2)
p = NULL;
} else {
p = data + 2;
}
int xgq = p;

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 28/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

|p—+{2:malloc(40)}k—>

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis

1
2
3
4
5
6
7
8
9

10

int vy;
int rdata = malloc (40);
int *p = &y;
if (y > 2) |
p = NULL;
} else {
p = data + 2;
}

int xgq = p;

29/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

|p—+{2:malloc(40)}k—>

|q—+{null,2:malloc(40)}F—>1

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis

QOWooNOOOTA~WN =

int vy;
int rdata = malloc (40);
int *p = &y;
if (y > 2) |
p = NULL;
} else {
p = data + 2;
}
int xgq = p;

30/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment

(SSA) form

flow sensitive

|p—+{2:malloc(40)}k—>

|q—+{null,2:malloc(40)}F—>1

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis

QOWooNOOOTA~WN =

int y;
int xdata = malloc(40);
int *p = &y;
if (y > 2) |
p = NULL;
} else {
p = data + 2;
int *q = p; flow insensitive

31/65

Points-to analysis

m can be flow sensitive or insensitive

m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)

m flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

p = data + 2;

|p — {2: malloc(40)}|—>

|q—> {null, 2: malloc(40)}|—> 1

int *q = p; flow insensitive

flow sensitive 1 int y;
2 int *data = malloc (40);
3 ...
. 4 int xp = &y;
1: int !
5 if (y > 2) |
6 p = NULL; p,q— {1: int y, null,
7 } else { 2:malloc(40)}
8
9
0

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 32/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment
(SSA) form
m can be field insensitive or sensitive

m field sensitive analysis tracks also offsets
m field sensitive analysis is more precise but more expensive

p = data + 2;

|p — {2: malloc(40)}|—>

|q—> {null, 2: malloc(40)}|—> 1

}
int *«q = p; flow insensitive

field insensitive

flow sensitive 1 int vy;
field insensitive 2 int xdata = malloc (40);
3 ...
; 4 int xp = &y;
1: int !
5 it (v > 21 ¢
6 p = NULL; p,q— {1: int y, null,
7 } else { 2:malloc(40)}
8
9
0

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 33/65

Points-to analysis

m can be flow sensitive or insensitive
m flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
m flow insensitive analysis used mainly for programs in static single assignment
(SSA) form
m can be field insensitive or sensitive

m field sensitive analysis tracks also offsets
m field sensitive analysis is more precise but more expensive

[0 = {(2: malloc (40),8) p = data + 2;

}
int *«q = p; flow insensitive

field sensitive

flow sensitive 1 int vy;
field sensitive 2 int xdata = malloc(40);
3 ...
. 4 int xp = &y;
[p = A ine v, O} f— ¢ 07 P TN
6 p = NULL; p,q— {(1: int y,0), null,
7) else { (2:malloc (40),8)}
8
9
0

TT

|a > {nu11, (2:malloc (40),8)

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 34/65

m a popular algorithm for points-to analysis presented in L. O. Andersen:
Program Analysis and Specialization for the C Programming Language, PhD
thesis, 1994

m applications of points-to analysis

m can prove that a program is memory safe, i.e., it contains no invalid pointer
dereference and no invalid memory deallocation
m can be used for computation of data dependencies

m can help to identify functions called via a function pointer
| ...

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 35/65

Static single assignment (SSA)

Static single assignment (SSA)

m a program form with only one assignment statement for each variable
m the assignment statement can be evaluated repeatedly
m special instructions called ¢-nodes added

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 37/65

Static single assignment (SSA)

m a program form with only one assignment statement for each variable
m the assignment statement can be evaluated repeatedly
m special instructions called ¢-nodes added

1 x = input();
2 z = x + 3;
3 if (z > 0) {
4 X =2z + 1;
5 z = 3 % Xx;
6 } else {
7 z =z + 5;
8

9
10
11 z =z + x;

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 38/65

Static single assignment (SSA)

m a program form with only one assignment statement for each variable
m the assignment statement can be evaluated repeatedly
m special instructions called ¢-nodes added

1 x = input(); 1 x1 = input();
2 z = x + 3; 2 zq4 = x4 + 3;
3 if (z > 0) { 3 if (zq > 0) {
4 x =z + 1; 4 Xo = z1 + 1;
5 z = 3 * X; 5 Zo = 3 x Xop;
6 } else { 6 } else {
7 z =z + 5; 7 z3 = z1 + 5;
8 } 8 }
9 9 x3 = o(x2,%1);
10 10 z4 = &(z2,23);
11 z =z + x; 11 25 = z4 + x3;

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 39/65

Applications of SSA

m simplifies static analysis

m without SSA, x may have different values in different locations
m with SSA, x; has the same value everywhere
m flow-insensitive analyses provide better results for programs in SSA

m used in many verification tools and also in compilers
m LLVM IR also uses SSA (sort of)

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 40/65

Data dependence

Data dependence

Consider a fixed control flow graph (CFG) with nodes V. We assume that for each
node n € V, we have sets:

m sdef(n) of memory locations that must be written by n
m wdef(n) of memory locations that may be written by n
m ref(n) of memory locations that may be read by n

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 42/65

Data dependence

Consider a fixed control flow graph (CFG) with nodes V. We assume that for each
node n € V, we have sets:

m sdef(n) of memory locations that must be written by n
m wdef(n) of memory locations that may be written by n
m ref(n) of memory locations that may be read by n

m null,unknown ¢ sdef(n) and null ¢ wdef(n) U ref(n)

m sdef(n) C wdef(n)

m sdef(n) contains only memory locations that represent one concrete object
each time n is executed

m the sets can be computed by a field-sensitive points-to analysis

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 43/65

Data dependence

Definition (data dependence)
Let V be the set of nodes of a CFG. A node n, € V is data dependent on a node
ny € Vifthereis a path ny, = ny,no, ..., nx = n, in the CFG such that
® unknown ¢ wdef(ny) U ref(n,) and wdef(ny)Nref(ny) € Ui« sdef(n;) or
® unknown € wdef(ny) and ref(n;) Z \J;_;.x sdef(n;) or
m unknown € ref(n;) and wdef(ny) Z U« sdef(n;).

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 44/65

Data dependence

Definition (reaching definition)

Consider a node ny, and e € wdef(n,). We say that the definition of e at n,,
reaches a node nif there is a path n, = ny, no, ..., Nk = nand

e & Uq<jck SAef(n;).

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 45/65

Data dependence

Definition (reaching definition)

Consider a node ny, and e € wdef(n,). We say that the definition of e at n,,
reaches a node nif there is a path n, = ny, no, ..., Nk = nand

e & Uq<jck SAef(n;).

m reaching definitions can be computed by an abstract interpretation
m unknown € wdef(ny) reaches all nodes reachable from n,,

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 46/65

Data dependence

Definition (reaching definition)

Consider a node ny, and e € wdef(n,). We say that the definition of e at n,,
reaches a node nif there is a path n, = ny, no, ..., Nk = nand

e & Uq<jck SAef(n;).

m reaching definitions can be computed by an abstract interpretation
®m unknown € wdef(n,) reaches all nodes reachable from n,,

Theorem

If n, is data dependent on ny,, then
m the definition of some e € wdef(ny) at ny reaches n, and e € ref(n,), or
B unknown € wdef(ny) U ref(n;) and wdef(ny) # 0 and ref(n,) # 0.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 47/65

Data dependence

m the previous theorem allows to compute an overapproximation of data
dependencies with use reaching definitions

m computation is relatively slow because it computes more information than
needed

m there are faster algorithms, e.g., byte-memory SSA algorithm presented in

M. Chalupa: Program Slicing and Symbolic Execution for Verification, PhD
thesis, 2021

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 48/65

Control dependence

Which statements are irrelevant for the assert?

NOoO Ok~ W=

unsigned int i, n;

n = input ();

i = 0;

while (i < n) {
i++;

1

assert (false);

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis

NO Ok~ W=

unsigned int i, n;

n = input();

i = 0;

while (i >= n) {
i++;

}

assert (false);

50/65

Which statements are irrelevant for the assert?

1 1 unsigned int i, n;
2 2 n = input();

3 3 1 = 0;

4 4 while (i >= n) {
5 5 i++;

6 6 }

7 assert (false); 7 assert (false);

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 51/65

Which statements are irrelevant for the assert?

unsigned int i, n;

n = input();

i = 0;

while (i >= n) {
i++;

}

assert (false);

NOoO Ok~ W=
NO Ok~ W=

assert (false);

®m removing a potentially non-terminating cycle can transform an unrechable
code into a reachable

m line 7 on the right is unreachable if input () always returns 0

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 52/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 53/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

weak control dependence
m assumes that every execution is finite
m an instance: standard control dependence

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 54/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

weak control dependence
m assumes that every execution is finite
m an instance: standard control dependence

strong control dependence
m sensitive to program non-termination: there can be a dependence between
two statements if one can infinitely delay the execution of the other

B an instance: non-termination sensitive control dependence

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 55/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 56/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

Definition (post-dominance)

Given an exit-CFG, its node b post-dominates a node a if b is on every path from a
to exit. If a # b, we say that b sirictly post-dominates a.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 57/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

Definition (post-dominance)

Given an exit-CFG, its node b post-dominates a node a if b is on every path from a
to exit. If a # b, we say that b sirictly post-dominates a.

Definition (standard control dependence)

Given an exit-CFG, we say that node n is standard control dependent (SCD) on
node b if

there exists a non-trivial path = from b to n with any node on = (excluding b)
post-dominated by n and

b is not strictly post-dominated by n.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 58/65

Standard control dependence

exit

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 59/65

Standard control dependence

m the SCD relation for an exit-CFG (V, E) can be computed in time O(|E|) using
the algorithm of J. Ferrante et al.: The Program Dependence Graph and lts
Use in Optimization, TOPLAS 1987

m each CFG can be transformed into an exit-CFG

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 60/65

Non-termination sensitive control dependence

m predicate nodes in CFG are nodes corresponding to branching statements

m maximal path is a path that cannot be further prolonged, i.e., it is infinite or it
ends in a node without any successor

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 61/65

Non-termination sensitive control dependence

m predicate nodes in CFG are nodes corresponding to branching statements

m maximal path is a path that cannot be further prolonged, i.e., it is infinite or it
ends in a node without any successor

Definition (non-termination sensitive control dependence)

Given a CFG, a node nis non-termination sensitive control dependent (NTSCD)
on a predicate node p if p has two successors sy and s, such that

all maximal paths from s; contain n and
there exists a maximal path from s, that does not contain n.

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 62/65

Non-termination sensitive control dependence

exit

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 63/65

Non-termination sensitive control dependence

m the NTSCD relation for a CFG (V, E) can be computed in time O(|V|?) using
the algorithm of M. Chalupa et al.: Fast Computation of Strong Control
Dependencies, CAV 2021

m NTSCD treats every program cycle as potentialy non-terminating

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 64/65

m we used program dependence graphs for programs without procedure calls
m there are also system dependence graphs for programs with procedure calls

m both NTSCD and SCD have applications in program slicing for software
verification: SCD leads to smaller sliced programs and can only lead to
produce false alarms, but not to false negatives

m there are other notions of control dependence, e.g., decisive order
dependence (DOD)

m points-to analysis and slicer for LLVM implemented in DG
https://github.com/mchalupa/dg

|1A159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 65/65

https://github.com/mchalupa/dg

