IA159 Formal Methods for Software Analysis

Bounded Model Checking, k-Induction

Jan Strejcek

Faculty of Informatics
Masaryk University

Focus and sources

focus
m memoryless version of symbolic execution
m bounded model checking (BMC)
m k-induction

source

m A. F. Donaldson, L. Haller, D. Kroening, and P. Rimmer: Software Verification
Using k-Induction, SAS 2011.

1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 2/30

Memoryless version of symbolic execution

m does not use symbolic memory, the assignments are stored to path condition

m to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance

m let ver: Vars — N be the function keeping the current instances
m initially, ver(x) = 1 for each x € Vars

(________ path condition pc
function ver

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 3/30

Memoryless version of symbolic execution

m does not use symbolic memory, the assignments are stored to path condition

m to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance

m let ver: Vars — N be the function keeping the current instances
m initially, ver(x) = 1 for each x € Vars

(________ path condition pc
function ver
y = 2xx+y+5; .
(________ path condition pc A Yver(y)+1 = 2 * Xver(x) + Yver(v) + 9

function ver with incresed value of ver(y) by one

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 4/30

Memoryless version of symbolic execution

m does not use symbolic memory, the assignments are stored to path condition

m to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance

m let ver: Vars — N be the function keeping the current instances
m initially, ver(x) = 1 for each x € Vars

(________ path condition pc
function ver

(________ path condition pc A Yver(y)+1 = 2 * Xver(x) + Yver(v) + 9
function ver with incresed value of ver(y) by one

(________ path condition pc
function ver

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 5/30

Memoryless version of symbolic execution

m does not use symbolic memory, the assignments are stored to path condition

m to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance

m let ver: Vars — N be the function keeping the current instances
m initially, ver(x) = 1 for each x € Vars

(________ path condition pc

function ver
y = 2*x+y+5; -

(________ AL SRR B A Yver(y)+1 = 2 % Xver(x) T Yver(y) T 5
function ver with incresed value of ver(y) by one

(________ path condition pc
function ver

y = *%;

(________ path condition pc
function ver with incresed value of ver(y) by one

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 6/30

Memoryless version of symbolic execution

m does not use symbolic memory, the assignments are stored to path condition

m to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance

m let ver: Vars — N be the function keeping the current instances
m initially, ver(x) = 1 for each x € Vars

(________ path condition pc
5 function ver
y = 2%x+ty+5; ~
(________ AL SRR B A Yver(y)+1 = 2 % Xver(x) T Yver(y) T 5
function ver with incresed value of ver(y) by one
(________ path condition pc
function ver
y = *%;

(________ path condition pc
function ver with incresed value of ver(y) by one

m symbolic execution of branching statements is modified similarly

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 7/30

Bounded model checking (BMC)

Bounded model checking (BMC)

m a technique for finding bugs
m proves correctness only very rarely
m similar to memoryless symbolic execution, but creates one SMT query

1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 9/30

Bounded model checking (BMC)

a technique for finding bugs
proves correctness only very rarely

similar to memoryless symbolic execution, but creates one SMT query
workflow

unwind all loops and recursion k-times for a given bound k
compute the error reaching formula ¢ from the unwound program
if © is satisfiable then
| return bug found
else
compute the bound reaching formula ¢ from the unwound program
if the « is unsatisfiable then
\ return the program is correct
else
\ return unknown (increase bound and start again)

© oo N O O b~ WO DN =

-
o

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 10/30

original program

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
while (i < n) {

v = input();

s += v;

++1i;
}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

11/30

original program unwound program for k = 3
unsigned char n = input(); unsigned char n = input();
if (n == 0) {return 0}; if (n == 0) {return 0};
unsigned char v = 0; unsigned char v = 0;
unsigned char s = 0; unsigned char s = 0;
unsigned int i = 0; unsigned int 1 = 0;
while (i < n) { if (1 < n) {

v = input(); v = input();
s += v; s += v;
++1i; ++1i;
} if (1 < n) {
assert (s >= v); v = input();
s += v;
++1;
if (1 < n) {
v = input();
s += v;
++1i;

if (i < n) {
bound_reached (); }}}}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 12/30

unwound program for k = 3

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++1;
if (i < n) |
v = input ();
s += v;
++1;
if (i < n) {
v = input();
s += v;
++1;

if (1 < n) {
bound_reached ();}}}}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 13/30

unwound program for k = 3

unsigned char n =
if (n == 0)
unsigned

input () ;
{return 0};
char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (1 < n) {
input () ;
s += v;
++1i;
if (i < n) |

v = input ();

s += v;

++1;

if (i < n) {

v =

v =

input () ;

s += v,

++1;

if (1 < n) {
bound_reached ();}}}}

assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

error reaching formula ¢

nn>0Avv=0AS8=0Ai1=0A
A\ ((/12[’11 AS1<V1) \Y
\/(i1<n1/\52:s1+v2/\i2:i1+1/\

A ((i22n1 A 32<V2) V
V (i2<n1 ANS=8S+WAk=b+t1A
A ((I.32I71 A 33<V3) \Y
V(i3<n1/\S4283—|—V4/\i4:f3—|—1/\
Adg>nm A $4<V4))))))

14/30

unwound program for k = 3 error reaching formula ¢
unsigned char n = input(); nN>0Avi=0As=0A1i=0A
if (n == 0) {return 0}; A((h>m A s <w)V
uns%gned char v = 0; \Y (I1 <M AS=8S+WAb=i+1A
unsigned char s = 0; ,
unsigned int i = 0; AN (=M A s2<Vve)V
if (1 < n) { V(ib<mANS3=8+vAl=b+1A
v = input(); AN((B>m A s3<v3) V
ST= Vi V(i3<n1/\S4283—|—V4/\i4:f3—|—1/\
++i; ,
if (i <) { A lp =i A Sa < va))))))
v = input (); .
s += v; satisfiable
++i; variable types are considered
if (1 <) | bitvector arithmetic is used
v = input();
s += v; m=2
++i; vi=0 =0 =0
if (1 < n) { Vo =224 s, =224 {2:1
bound_reached ();}}}} v3=63 s3=31 i3=2

assert (s >= v);

bug found!

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 15/30

Example 2

original program

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
while (i < n) {

v = input();

s += v;

++1i;
}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

16/30

Example 2

original program unwound program for k = 3
unsigned char n = input(); unsigned char n = input();
if (n == 0) {return 0}; if (n == 0) {return 0};
unsigned char v = 0; unsigned char v = 0;
unsigned int s = 0; unsigned int s = 0;
unsigned int i = 0; unsigned int 1 = 0;
while (i < n) { if (1 < n) {

v = input(); v = input();
s += v; s += v;
++1i; ++1i;
} if (1 < n) {
assert (s >= v); v = input();
s += v;
++1;
if (1 < n) {
v = input();
s += v;
++1i;

if (i < n) {
bound_reached (); }}}}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 17/30

Example 2

unwound program for k = 3

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int 1 = 0;

if (1 < n) {

v = input();

s += Vv;

++1i;

if (i < n) {
v = input();
s += v;
++1;

if (1 < n) {
v = input();
s += v;
++1i;
if (1 < n) {
bound_reached();}}}}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 18/30

Example 2

unwound program for k = 3 error reaching formula ¢
unsigned char n = input(); nM>0Avi=0ASs=0A1i=0A
if (n == 0) {return 0}; A «ﬁ >m A S < W) v
uns?_gned c;har vo=0; \/(i1<n1 ANS=8+wvAb=i+1A
unsigned int s = 0; .
unsigned int i = 0; A qb‘zlh A S < Vo) V ' '
if (1 < n) { V(ie<mANS=8+wvAi=kb+1A
v = input (); AN ((B>m N s3<vg) V
s +=v; V(i3<n1/\S4133+V4/\i4:i3+1/\
++1i; .
! >
if (1 < n) | Ads=m A s < Wa))))))
v = input();
s += v;
++1;
if (1 < n) {
v = input();
s += vy
++1;

if (1 < n) {
bound_reached();}}}}
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

19/30

Example 2

unwound program for k = 3 error reaching formula ¢
unsigned char n = input(); nM>0Avi=0ASs=0A1i=0A
if (n == 0) {return 0}; A((h>m A si<w)V
uns?_gned c;har vo=0; V (i1 <MmAS=S+wAb=i+1A
unsigned int s = 0; i
unsigned int i = 0; A (('lz ZMm A S<V)V ' '
if (i < n) { V(ie<mANS=8+wvAi=kb+1A
v = input (); AN ((B>m N s3<vg) V
s t=vi; V(B<mAS=8+vAig=Ik+1A
++1i; .
! >
if (i <) { Ads=m A s < Wa))))))
v = input (); unsatisfiable
s += A\ .
+Hi; bound reaching formula v
if (1 <n) | M>0AV=0AS=0A#H=0A
v = input(); . . i
s += v; AN <mANS=8+wmwAb=i+1A
++i; Nig<M ANS=8+VAk=k+1A
if (1 < n) { ANig<mM N Sas=8+V N ig=i+1A

bound_reached ();}}1}} A iy < M
assert (s >= v);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 20/30

Example 2

unwound program for k = 3 error reaching formula ¢
unsigned char n = input(); m>0Avi=0As$=0A7ihH=0A
if (n == 0) {return 0}; A((h>m A si<w)V
uns?_gned c;har vo=0; Vv (i1 <M A S=8S+WwWAb=i+1A
unsigned int s = 0; ,
unsigned int i = 0; A (('12 2m A s2<we)V .)
if (i < n) { V(ie<mANS=8+wvAi=kb+1A
v = input (); AN ((B>m N s3<vg) V
s t=vi; V(B<mAS=8+wAii=k+1A
++1i; .
' >
if (i <) { Ads=m A s < Wa))))))
v = input () unsatisfiable
s += A\ .
+Hi; bound reaching formula v
if (1 <n) | M>0AV=0AS=0AKH=0A
v = input(); . . i
s += v; AN <mANS=8+wmwAb=i+1A
++i; Nig<M ANS=8+VAk=k+1A
if (i < n) { ANlz<nN NS4g=8+Vs ANig=k+1A

bound_reached();}}}}

A g <m
assert (s >= v);

satisfiable = unknown (bound reachable)
|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 21/30

Notes on BMC

m very efficient in finding bugs

m uses a sort of SSA when constructing the formula

m constant propagation can simplify the program and the formula and it can
reveal that the bound is unreachable

m implemented for example in CBMC

tool for bounded model checking of C and C++ programs

supports C89, C99, most of C11 and most extensions of gcc and Visual Studio
the winner of SV-COMP 2014

https://www.cprover.org/cbmc/

a version for Java programs called JBMC

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 22/30

https://www.cprover.org/cbmc/

k-induction

m extension of BMC that can prove correctness more often

m very successful on symbolic transition systems
m to prove program correctness, we show
base case:
all feasible paths starting in an initial state of length at most k are correct
induction step:
each feasible path of length k + 1 that has a correct prefix of length k is also
correct

m if the base case fails, we found a bug
m if the induction step fails, we can increase k and try again

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 24/30

m extension of BMC that can prove correctness more often

m very successful on symbolic transition systems
m to prove program correctness, we show

base case:
all feasible paths starting in an initial state of length at most k are correct
induction step:
each feasible path of length k + 1 that has a correct prefix of length k is also
correct

m if the base case fails, we found a bug
m if the induction step fails, we can increase k and try again

m the idea can be applied to programs in different ways
B k-induction on single-loop programs
®m k-induction does semantically the same as backward symbolic execution

m M. Chalupa and J. Strejéek: Backward Symbolic Execution with Loop Folding,
SAS 2021.

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 25/30

k-induction on

n,x,1i *,0,0;

a,b,c =1,2,3;

while (i < n) {
assert(a != b);
a,b,c = b,c,a;
i++;

}

assert(x = 0);

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction 26/30

k-induction on programs

n,x,i = %,0

a,b,c =1,2

while (i
assert (
a,b,c = b,c,a;
i++;

}

assert(x = 0);

4
n,x,i =*,0,0;
a,b,c=1,23;

{

assumei < n;
assert a # b;
a,b,c = b,c,a; D
i=i+1;

)
assume i > n;
assert x = 0;

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

27/30

k-induction on programs

n,x,i = %,0,0;
a,b,c =1,2,3; 4
while (i < n) { n,x,i=*0,0;
assert(a != Db); a,b,c=1,.23;
a,b,c = b,c,a; ¢
1445 assume i < n;
} asserta # b;
assert (x = 0); B: ab,c=bc,a:
v i=i+1;
n,x,i =*,0,0;
a,b,c=1,23;
v
assumei < n;
asserta #b; D assume i > n;
a,b,c =b,c.a; assert x = 0;
i=i+1;
)
assume i > n; base case (= BMC)
assert x = 0; fork =3

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

28/30

k-induction on programs

n,x,i = %,0,0;
a,b,c = 1,2,3; .+
while (i < n) { n,x,i=*0,0;
assert(a '= b); a,b,c=1,.23;
a,b,c = b,c,a; ¢
1445 assume i < n;
} | asserta # b;
assert(x = 0); B: a,b,c=Db,c,a;
i =i+1;
4
n,x,i =*,0,0;
a,b,c=1,23;
assumei < n;
asserta #b; D assume i > n;
a,b,c =Db,c,a; assert x = 0;
i=i+1;
assume i > n; base case (= BMC)
assert x = 0; fork =3

|1A159 Formal Methods for Software Analysis: Bounded Model Checking, k-Induction

B':

induction step for k = 3

nXi=***.
abc o ***

!

assume i < n;
assume a # b;
a,b,c = b,c,a;
i=i+1;

v

assumei > n;

assert x = 0;

29/30

The End

