MUNI|RECETOX

Research infrastructure

Basics of Sequencing Technologies

PřF:E4014 Projekt z Matematické biologie a biomedicíny biomedicínská bioinformatika FI:IV110 Project in Sequence Analysis FI:IV114 Projekt z bioinformatiky a systémové biologie

Vojtěch Bartoň vojtech.barton@recetox.muni.cz

RECETOX, Masaryk University

September 29, 2024

Table of Contents

- Basics of sequencing
- Illumina Sequencing
- Oxford Nanopore Sequencing
- Comparison
- General Processing of Sequencing Data
- Summary

Sequencing

DNA Sequencing

DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA.

Examples

Question: What's it good for?

V. Barton • Sequencing technologies • September 29, 2024

Sequencing

Sequencing Technology

Figure: History of sequencing technology[1]

Illumina sequencing

NextGeneration sequencing technology

- Sequencing by synthesis
- Utilizing PCR
- Widely used

Principle

https://youtu.be/fCd6B5HRaZ8?si=0Np6Q6pX4236HnvN

Oxford Nanopore

- Third generation of sequencing technology
- Sequencing by ion stream disruption (electricity)
- Long reads, real-time
- Squiggle

Principle

https://youtu.be/RcP85JHLmnI?si=k732mK9liWV3gw5d

Comparison

	Illumina	Oxford Nanopore		
Read length	< 600 bp	< 2 Mbp		
Accuracy	99 %	87-98 %		
Price per Gbp	\$ 40-60 (NextSeq)	\$ 50-200 (minION)		
	\$ 10-35 (NovaSeq)	\$ 20-40 (PromethION)		
Real-time		\checkmark		
Epigenomics	(Special chemistry)	\checkmark		

Table: Comparison of technologies

General workflow

V. Barton • Sequencing technologies • September 29, 2024

Basecalling

Basecalling

Definition

Basecalling is the process of converting raw sequencing signals into a nucleotide sequence (A, T, C, G).

Examples

Question: How is basecalling done for Illumina and Oxford Nanopore?

Fastq format

The FASTQ format is a text-based file format used to store both the raw sequence data and the corresponding quality scores from sequencing. Each entry consists of four lines:

- 1. Sequence identifier starting with @.
- 2. Raw nucleotide sequence (A, T, C, G).
- 3. + symbol, sometimes followed by the same identifier.
- 4. PHRED quality scores encoded as ASCII characters corresponding to each nucleotide in the sequence.

Fastq format

PHRED Score

The PHRED score is a quality score that indicates the accuracy of a nucleotide base call in DNA sequencing, with higher scores representing higher confidence and lower error probabilities.

Quality control

Quality control

- Describe the quality of sequencing data
- Set parameters of preprocessing (Trimming & Filtering)

Examples

Question: What quality parameters to assess?

Examples

- Fastqc
- Nanoplot
- Fastp

Assembly & Alignment

Assembly & Alignment

DeNovo Assembly

De novo assembly is the process of constructing a genome sequence from short DNA fragments without the use of a reference genome, by assembling overlapping reads into longer contiguous sequences (**contigs**).

Alignment

Mapping is the process of aligning sequencing reads to a **reference genome** to determine the origin of each read and identify variations or similarities.

Examples

- DeNovo: SPADes
- Mappers: Bowtie2, BWA
- RNA Mappers: STAR (splice-aware mapping)

SAM/BAM format

SAM/BAM format

SAM (Sequence Alignment/Map) and BAM (Binary Alignment/Map) are file formats used to store aligned sequencing reads. Both include information about the read sequences, their alignment positions, mapping quality, and optional metadata.

Examples												
HD VN:1.5 SD:coordinate SD SM:ref LN:45												HEADER section
r001	99	ref	7	30	8M2I4M1D3	M =	37	39	TTAGATAAAGGATACT	ΓG *		
r002	. 0	ref	9	30	3S6M1P1I4	М *	0	0	AAAAGATAAGGATA	*		
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29,-,6H5M,17,0;	
r004	6 1	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*		ALIGNMENI SECTION
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9,+,5S6M,30,1;	
r00'	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	NM:i:1	
QNAM	E FLAG	RNAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUAL		

Alignment QC

Alignment QC

Examples

Question: What parameters to collect?

Examples

- Samtools
- QualiMap
- Picard tools

Postprocessing

Postprocessing

Depends on type of the experiment, quality of data, study design, hypotheses, ...

Visualization

Integrated Genome Browser (IGV)

Feature Quantification

RNA-sequencing (genes), Metagenomics (bacteria)

Variant calling

Mutations, SNP, CNV

Summary

To Remember

- Bioinformatics (and especially the sequencing bioinformatics) is a very new field
- No good books, no standards, nothing lasts forever, ... almost everything is old and outdated!
- Garbage in -> garbage out
- If you do not understand the whole process you don't know what the results mean

Keywords

Important terms

Sequencing, Illumina, Oxford Nanopore, Basecalling, Paired-end sequencing, PCR, bridge PCR, Adapters, Index, Pooling, Demultiplexing, Squiggle, Fasta, Fastq, SAM/BAM, DeNovo Assembly, Alignment, Mapping, Splice-aware, Quality control, Filtering, Trimming, Phred Score, SNP, Mutation, CNV, Workflow, ...

M A S A R Y K U N I V E R S I T Y