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Background: De novo genome assembly relies on two kinds of graphs: de Bruijn graphs and overlap graphs. Overlap
graphs are the basis for the Celera assembler, while de Bruijn graphs have become the dominant technical device in
the last decade. Those two kinds of graphs are collectively called assembly graphs.
Results: In this review, we discuss the most recent advances in the problem of constructing, representing and
navigating assembly graphs, focusing on very large datasets. We will also explore some computational techniques,
such as the Bloom filter, to compactly store graphs while keeping all functionalities intact.
Conclusions: We complete our analysis with a discussion on the algorithmic issues of assembling from long reads (e.g.,
PacBio and Oxford Nanopore). Finally, we present some of the most relevant open problems in this field.
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Author summary: All available assemblers are built upon the notions of de Bruijn graphs or overlap graphs. This review
discusses the most recent advances in the problem of constructing, representing and navigating those graphs, focusing on
very large datasets. Moreover, we present some of the most relevant open problems.

INTRODUCTION

The widespread use of next generation sequencing (NGS)
technologies, which is due to their reduced cost, has
revitalized the algorithmic research focused on de novo
assembly, since the huge amount of available data poses
new computational challenges. A fundamental tool used
for de novo assembly is a graph representation of the
relationships between the portions of the genome, called
reads, sharing a common prefix and suffix. A commonly
used representation is the de Bruijn graph, which is based
on the notion of k-mers— a length k substring of a read.
In the context of genome assembly, a de Bruijn graph is a
graph whose vertices are the k-mers of the reads, and each
edge connects two k-mers that share a common prefix and
suffix of length k – 1. Another graph representation is the
overlap graph, where we have a vertex for each read, and

two vertices r1 and r2 are connected by an edge (r1, r2)
when a suffix of r1 is equal to a prefix of r2. Those two
kinds of graphs are called assembly graphs. Clearly,
overlap graphs are more informative (with respect to the
input reads) than de Bruijn graphs, but they usually
require more computational resources to be built and
stored. On the other hand, the simpler structure of de
Bruijn graphs can allow some more sophisticated
arguments to be applied.
Both representations share the idea that a genome

assembly corresponds to a path in the graph: for this
reason, the step following the construction of such a graph
is the extraction of relevant paths. Under ideal conditions,
such as the absence of errors and repeats, we can
reconstruct only one relevant path in such graph (that is,
there is only one possible assembly). Unfortunately, errors
and repeats are common, hence there may be several paths
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in the graph, each corresponding to a possible assembly.
For this reason, all widely used assemblers compute and
output, from a graph representation of reads, a set of
strings called contigs— putative portions of the complete
genome.
While contig assembly is a notion that goes back 20

years, surprisingly few efforts have been spent to produce
a deep theoretical and practical investigation of how to
characterize the substrings that can be extracted from an
assembly graph. In this direction, the notion of omnitigs
[1]— the set of contigs appearing in all possible paths of
the assembly graph— deserves further investigation.
In the literature, both de Bruijn and overlap graphs have

been considered for designing genome assemblers. The
construction of such graphs is one of the most resource-
intensive steps of all assembly algorithms: thus it poses
some major scalability issues. The main goal of this
survey is to discuss the most important differences
between those two approaches to genome assembly,
especially regarding the influence of the recent results on
compressed data structures, which have introduced in
bioinformatics some sophisticated, but computationally
efficient, algorithms. Mainly, the Burrows-Wheeler
Transform [2] and the FM-index [3] are two powerful
tools for indexing huge collections of sequences, such as
reads, with the goal of quickly computing information
related to the substrings of the reads (e.g., Longest
Common Prefix array and the maximal overlap between
reads).
This paper surveys the combinatorial and algorithmic

aspects of assembly graphs. While there are several
surveys on computational aspects of genome assembly, to
the best of our knowledge no survey details the
computational aspects of assembly graphs. In fact, [4] is
a wide-ranging discussion of genome assembly, while [5]
and [6] focuses on second generation (short read) data
(Illumina’s SOLEXA and Applied Biosystem’s SOLID)
and deal with the general aspects of the assembly pipeline.
Another survey [7] focuses on quality assessment and
defines an ad-hoc measure for the trade-off between
contig lengths and accuracy. Assemblers of Sanger and
short read data, from five categories (greedy, OLC, de
Bruijn graphs, seed-extend, and branch-and-bound) are
considered and compared. [8] compares the two
approaches based on OLC and de Bruijn graphs in
relation to second-generation reads and in terms of
memory occupation and construction efficiency. An
evaluation pipeline is the main focus of [9], which
presents and compares ten long read assemblers (third-
generation reads) in terms of contiguity, completeness and
accuracy. Finally, the main topic of [10] is the scaffolding
of contigs by means of several types of external data (such
as long-range linking data, physical mapping, long reads,
subcloning, paired-end reads, and chromosomal contact

data). The goal of our survey are the theoretical aspects of
the two main assembly approaches—OLC and de Bruijn
graph— paying particular attention to the construction
and the “cleaning” of the graph structures and to the
support data structures (such as BWT, FM-index and
Bloom Filter) in relation both to second-generation (short)
and third-generation (long) reads. Moreover, this survey
proposes a list of open problems which are of some
interest.
We will introduce the formal definitions of overlap

graphs and de Bruijn graphs from a mathematical point of
view, and we will discuss how those graphs can be built,
managed, and analyzed efficiently. We point out that
efficiency is essential when assembling long genomes,
such as human genomes, or when large datasets are
involved— as usually is the case for short reads. More-
over, we will also discuss the main differences between
assembly graphs obtained from short reads and from long
reads. Finally, the last section concludes our paper with a
discussion of the most relevant open problems of the field.

PRELIMINARIES

Since reads are essentially substrings of a longer and
unknown genome, we need to summarize the data
structures that are most widely used to index and query
texts. One of the most prominent of these data structures
is the Burrows-Wheeler Transform (BWT), which is
adopted by the majority of the methods working on NGS
data.
The BWT [2] of a set R of reads is a permutation B of

their symbols such that B[i] is the symbol preceding the i-
th smallest element in the lexicographically ordered set of
all suffixes of the reads in R.
To each read ri in R, a sentinel symbol $i that is not in

the alphabet S of the reads and that lexicographically
precedes all symbols in S, is appended. Moreover, $i < $j
if the read ri precedes read rj in R. In Figure 1 an example
of the BWT is presented for a set of two reads. For
simplicity the same sentinel $ has been appended to both
reads.
Some other widely adopted data structures, which are

strictly related to the BWT, are the Generalized Suffix
Array (GSA), the Longest Common Prefix (LCP) array,
and the FM-index. The GSA [11] of the set R is the array
Sa where the element Sa[i] points to the suffix of a read in
R that is the i-th smallest element in the lexicographically
ordered set of all suffixes of the strings in R. The LCP
array [12] is the array L such that L[i] is equal to the length
of the longest prefix shared by the suffixes pointed to by
Sa[i] and Sa[i – 1].
Notice that the i-th symbol B[i] of the BWT is the

symbol preceding the suffix pointed to by Sa[i]. All
suffixes with a common prefix Q appear consecutively in
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an interval [b, e) on Sa, which is called a Q-interval. Since
Sa and B are closely related, also [b, e) on B is called a Q-
interval. The backward s-extension of a Q-interval is the
sQ-interval (that is, the interval of the suffixes sharing the
common prefix sQ), and can be efficiently computed by
means of the FM-index functions C and Occ [3], where
C(s) is the number of occurrences in B of symbols that are
alphabetically smaller than s and Occ(s, i) is the number
of occurrences of s in the prefix of the first i – 1 symbols
of the BWT B.
The forward s-extension of a Q-interval [b, e) is the

Qs-interval [b´, e´), that is the interval of the suffixes
sharingQs as a prefix. The interval [b´, e´) is contained in
[b, e), and can be efficiently computed by applying the
concept of bidirectional BWT and linked intervals as
proposed in [13,14]. Let Br be the BWTof the set Rr of the
reversed reads of R. Then, the Q-interval [b, e) on B and
the rev(Q)-interval [br, er) on Br are linked intervals,
where rev(Q) is the reverse of Q. Two linked intervals
have clearly the same width b – e = br – er. The forward s-
extension of [b, e) (that is, the Qs-interval on B) and the
backward s-extension of [br, er) (that is, the srev(Q)-
interval on Br) are linked intervals. Moreover, observe
that for a string Q of just one symbol, Q = rev(Q) and [b,
e) = [br, er). Based on these concepts, the formulas
presented in [13] allow to compute efficiently the
simultaneous backward s-extension of [br, er) and
forward s-extension of [b, e) using only the FM-index
functions C andOcc of the BWT Bwithout computing the
BWT Br of the reversed reads. The above case leads to

the well known notion of bidirectional FM-index and
there is a wide literature on the use of such index to
perform pattern search in an amount of time that scales
linearly in the size of the pattern P. Indeed, both backward
and forward s-extensions have constant time cost, once
functions C and Occ and the BWT B are given.
The main interest for using the BWT and the FM-index

functions to analyze NGS data is due to the fact that they
lead to a succinct data representation of genomic reads
[14,15] and they are quite flexible in providing efficient
methods for several crucial tasks in bioinformatics, such
as the alignment of reads [16,17]. Most notably, the BWT
and FM-index allow to obtain a linear time algorithm to
perform a task that previously required quadratic time,
that is the operation of computing all prefix-suffix
overlaps among reads, avoiding a costly all-against-all
comparison among reads [14].
Once the BWT and FM-index of the collection of reads

are given, the computation of overlaps is performed by
reading in one step all the reads and incrementally
computing Q-intervals related to common substrings Q of
the reads, that may be prefixes and suffixes of some reads,
i.e., overlaps shared by reads. Distinct Q-intervals are
obtained by reading suffixes of the reads of increasing
length and then iteratively performing backward exten-
sions. The LCP and GSA arrays support the test of
verifying when a Q-interval corresponds to a string Q that
is an overlap among some reads.
In the literature there are several approaches to

construct the BWT of a large collection of short DNA
reads. For example BCR and BCRext [18] construct the
BWT in external memory and both are based on an
iterative procedure, where each iteration j computes the
BWT permutation of the symbols preceding the suffixes
of length at most j by simulating the insertion, in the BWT
that has been computed in the previous iteration, of the
suffixes of length exactly equal to j. At each iteration the
partial BWT is partitioned into segments Bj (s) (external
files) such that Bj (s) is the BWT segment related to the
suffixes starting with symbol s. At the end of the
iterations, these segments contain the BWT of the input
collection. BCR and BCRext are implemented in the suite
BEETL for building and manipulating the BWTof a large
collection of strings. Another tool to build the BWT is
ropeBWT2 [19] that is suitable for processing long reads
as well as short reads. The approach is similar to BCR/
BCRext since it works by incrementally inserting
sequences into a partial BWT, but it is tailored to be
fully in-memory.
More recently, alternative approaches to build a BWT

of a collection of reads that are implemented in external
memory and with a parallel approach have been
introduced [20].
Another important data structure is the Bloom filter

Figure 1. Example of the BWT (first column) for the

two reads acgtacgt and ggtcca. The second column
lists the suffixes in lexicographical order.
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[21]. It allows to store a dictionary, that is a set of
elements with membership queries—we can ask whether
an element belongs to the set. The usual implementation
of Bloom filter consists of a vector of m bits, initialized
with zeros, and h hash functions providing h array
positions. To store an element, h array positions are set to
1; while the presence of an element is tested by verifying
that all the bits at those positions are 1.
Notice that it is easy to extend Bloom filters to solve a

problem that is more sophisticated than membership. For
example, counting Bloom filters [22] allow to determine
the number of occurrences of an element in a multiset—
which is the typical use for assemblers.
While Bloom filters are easy to implement, very fast,

and they use only a small amount of memory, they
introduce two drawbacks: (i) they are probabilistic, so
different executions might give different results, and
(ii) they introduce some collisions, that is the number of
occurrences of some elements is overestimated.
A quick and effective way to determine if two

documents are duplicate is the MinHash sketch [23],
which essentially consists of estimating the Jaccard
coefficient— given two sets A and B, the ratio
jA\Bj
A[B — by choosing a hash function h and a random
permutation p of the universe set and saying that A = B if
argminx∈A{h(p(x))} = argminy∈B{h(p(y))}.
A related idea is minimizers [24]. In this case, two sets

A and B of strings are considered identical if the
lexicographically minimum string in A is equal to the
minimum in B. The typical usage is to test whether two
strings a and b share a common substring, by having a
sliding window in a and one in b and extracting all fixed-
length substrings within each window. If a and b share
common substrings, we can find the corresponding
windows inside the substring, and the two sets of fixed-
length substrings are the same—which is checked by
looking at the minimum substring in each set.

ANATOMY OF A DNA ASSEMBLY
PIPELINE

Many tools for assembling DNA fragments were
proposed in the last 30 years, each one implementing
different strategies to achieve its goal. Although assem-
blers differ in performance, results, and method, almost
every pipeline follows the same steps, namely reads
correction, assembly graph computation, graph cleaning,
contig computation, and scaffolding.
Depending on the sequencing technology used to

produce the input reads, each step might overcome
different challenges. For example, errors produced by
NGS machines and 3rd generation sequencing machines
differ in rate, distribution, and type, thus read correction
tools shall account for them.

Clearly, read correction tools aim to remove sequencing
errors from the reads. Depending on the input sequences,
read correction tools may build a consensus sequence
between the reads or exploit the shared sequences
between the reads to correct them [25].
The second step of DNA assembly pipelines aims to

build a graph representing overlap relations between reads
or substrings of reads. To this purpose, two types of
graphs are used in the literature: overlap graphs and de
Bruijn graphs. The main difference between the two is
that the former represents either exact or approximate
overlaps between the reads, whereas the latter represents
only perfect overlap between substrings of fixed length of
the reads. Selecting one representation over the other is
not a trivial task and is application dependent. Indeed,
building overlap graphs is usually much more computa-
tionally expensive than building de Bruijn graphs but, on
the other hand, de Bruijn graphs are difficult to use with
long reads due to the high error rate.
The third step, graph cleaning, aims to remove errors

from the graph that reads correction tools were not able to
remove. There are three main categories of graph errors
that require cleaning, namely tips (short dead-end paths
diverging from the main path), bubbles (parallel short
paths that start and end in the same two nodes), and bulges
(short low-coverage paths that create alternate paths
between two nodes).
After this last step, DNA assembly pipelines build

contigs. Contigs are contiguous length of genomic
sequence in which the order of bases is known to a high
confidence level [26]. In this step residual bubbles in the
graph are usually considered heterozygous loci and,
depending on the application, are either maintained or
removed.
The last step is scaffolding; in this step contigs are

sorted exploiting some additional information (e.g., mate-
pair information), the distances between contigs are
estimated, and scaffolds (i.e., successions of contigs and
gaps) are produced. Gaps in scaffolds represent portions
of the genome that the assembly pipeline was not able to
infer and are represented by the letter N in the sequence.

Assembly graphs

We will consider two different types of assembly graphs:
(1) those stemming from the Overlap-Layout-Consensus
(OLC) approach— the overlap graph and the related
string graph— and (2) the de Bruijn graph.
The OLC is an approach to assemble a genome from a

set of strings (also called reads) extracted from the
genome, and it is based on the construction of the so-
called overlap graph whose vertices are the input reads
and arcs are the overlap relations between reads, and the
reconstructed sequence is obtained by a visit of the paths
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of the graph. Sometimes we are interested in the string
graph, that is obtained from the overlap graph after
removing all redundant arcs. This approach is basically
composed of three steps: (i) computing the overlaps
between the reads, (ii) laying out the overlap information
on a graph, and (iii) inferring the consensus sequence.
Observe that both the overlap graph and the string graph
were initially proposed by Myers [27] before the advent
of NGS technologies, and they allow to assemble
overlapping sequences into larger contigs. The computa-
tion of the overlap graph is time and space consuming and
is considered the bottleneck of an OLC pipeline [28].
A practical advantage of overlap/string graphs over de

Bruijn graphs is that they can immediately disambiguate
short repeats that de Bruijn graphs might resolve only at
later stages.
Given a set R of reads, the overlap graph GO [27] is the

directed graph (R, E) whose vertices are the strings in R,
and the pair (ri, rj) of string ri and string rj is an arc in E if
a suffix of ri is equal to a prefix of rj , or in other words
they have an overlap. The suffix of rj exceeding the
overlap is usually called extension ei,j of ri with rj and is
used as the label of the arc (ri, rj) (see Figure 2 for an
example on a set of five reads). Observe that also the
prefix of ri before the overlap can be used as the label of
the arc (ri, rj).
A path (ri1, . . . , rik) in the overlap graph represents a

string w that is obtained by assembling the reads of the
path. More precisely, such string is the concatenation w =
r1ei1,i2 ei2,i3� � � eik – 1,ik [29]. In particular, an arc (ri, rj) is
a path with only two vertices representing the string
s = riei,j . An arc (ri, rj) is called reducible if there exists a
path from ri to rj, including some other vertex,
representing the same string of (ri, rj). Reducible arcs
are not helpful in assembling reads, and they can be
removed from the overlap graph, hence obtaining the
string graph. We can now introduce the notion of de
Bruijn graph.
Given a set of reads R, a node-centric de Bruijn graph

(dBG) (V, E) of order k of the set R, is a graph whose
vertices are all the distinct substrings of length k of R
(called k-mers in the bioinformatics literature and also k-
grams in the computer science community), and the pair
(u, v) of k-mers is an arc of E if the length (k – 1) suffix of
u is equal to the length (k – 1) prefix of v. The label of the
arc (u, v) is the last character of the node v. The edge-
centric definition of a de Bruijn graph requires the
additional condition that the (k +1)-mer, obtained by
concatenating u and the last character of v (or the first
character of u and v), occurs in some read of R. Clearly,
from an edge-centric graph of order k we can derive a
node-centric de Bruijn graph of order k, but not the
opposite. Note that a node-centricde Bruijn graph may
induce incorrect assemblies of the original sequence. In
Figure 3 an example of de Bruijn graph for two reads is
depicted.

ASSEMBLING SHORT READS

In this section we will discuss how string graphs or de
Bruijn graphs are (1) constructed, (2) stored from a
methodological point of view, and then (3) how each
graph is exploited to complete the assembly.
Since string graphs are completely generic (for instance

there is no upper bound on the number of arcs incoming
or outgoing from a vertex), there are not huge differences
between storing string graphs and storing general graphs.
For this reason, we will not discuss how to store string
graphs. In fact, the computation of an implicit representa-
tion of an overlap graph is indeed one of the simplest steps
that can be done quite efficiently by a single scan of the
collection of reads [30].
Symmetrically, the procedure to build a de Bruijn graph

is quite standard: scan all reads to determine the set of k-
mers, eventually dropping k-mers that are too infrequent
(likely due to errors) or too frequent (likely belonging to
repeats). For this reason, we will not discuss how to build
de Bruijn graphs. Although building de Bruijn graph is

Figure 2. Example of the overlap graph for five reads r1, r2, r3, r4, r5. Each edge (ri, rj ) is labelled by the extension ei,j .
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relatively easy in theory, extracting meaningful informa-
tion from it might be challenging. In this setting, the
information we want to retrieve from the graph is a set of
contig, i.e., paths describing substrings of the sequenced
genome. The main obstacles in this task are errors in the
input reads and repeated regions in the genome that create
short dead-ended paths and entangle the graph, yielding to
a structure that is difficult to analyze. Removing dead-
ended short paths from the graph is quite straightforward
(see Section of “Anatomy of a DNA assembly pipeline”)
whereas dealing with repeated regions is usually a much
more difficult problem. Many different methods were
proposed in the literature to deal with repeated regions of
the genome and, surely, many more will be proposed in
the next years. For example, IDBA [31] solves this
problem by iterating the construction and analysis of the
de Bruijn graph for increasing values of k, Paired de
Bruijn Graphs [32] includes mate pair information in the
structure of the graph, Pathset graphs [33] exploit the
mate pair information to estimate the distance between
edges in the assembly graph, SEQuel [34] almost
completely avoids this problem by using an extension
of the de Bruijn graph (called positional de Bruijn Graph)
that incorporate the approximate positions of the reads in
the sequenced genome, and AlignGraph [35] distin-
guishes paths for repetitive regions by incorporating mate
pair information and alignment position in the nodes of
the graph.
Although this task is extremely important in bioinfor-

matics, we will not provide a deeper description of the
methods since this survey’s main focus is on methods to
construct, represent, and navigate assembly graphs.

Constructing string graphs

This section is devoted to presenting some of the tools for
building the string graph of a set of reads. The most used
tool is SGA (String Graph Assembler) [14,15]. SGA is
based on the Burrows-Wheeler Transform and the FM-
index of the set of reads. Other tools are Fermi [36] and
Readjoiner [28]. Fermi is inspired by SGA and is tailored
for variant calling. Readjoiner is based on an efficient
computation of a subset of exact suffix-prefix matches of
the overlap graph. The first external-memory tool to build
a string graph is LSG (Light String Graph) [30] and is
based on the BWT and the FM-index of the set of reads.
Observe that SGA, Fermi and Readjoiner are SGAs since
they have also an assembly phase, while LSG only
computes the string graph, but can use SGA’s assembly
procedure.
Readjoiner [28] is based on an efficient computation of

a subset of exact suffix-prefix matches (overlaps) and, by
subsequent rounds of suffix sorting, scanning, and
filtering, outputs the irreducible edges of the graph.
Readjoiner preprocesses the input set by removing the
reads which are a prefix or suffix of some other read. This
is performed via radix sort on strings, which is applied to
the input set expanded with the reverse-and-complemen-
ted reads. There are the following two steps: First,
determining all proper suffixes which may be involved in
a suffix-prefix match (SPM-suffixes), i.e., all read suffixes
of length at least lm (lm is a parameter equal to the
minimum overlap length) sharing a prefix of length ≥k
with some read in the input set— k£lm is a parameter
chosen on the basis of a time/space trade-off. Then, from
the sorted set of SPM-suffixes, the algorithm computes
the suffix-prefix matches (overlaps) and outputs the
irreducible edges of the graph, by subsequent rounds of
suffix sorting, scanning, and filtering.
Notice that Readjoiner uses some heuristics in building

the string graph, which is only an approximation of the
string graph defined in Section of “Preliminaries”.
SGA [14,15] constructs the FM-index of the input set R

of reads, together with the bidirectional BWT [13], and
uses those structures to efficiently compute the arcs of the
string graph. Indeed, SGA uses the FM-index of the input
reads and of their reversed version. The overlaps between
the reads are computed in the following way. Each read r
in the input set R is processed in three steps: (1) all the
suffixes of r are considered by increasing length and, by
performing backward extensions on the BWTof R, all the
reads having overlap with r are found (this step is to find
overlaps between reads on the same strand); (2) the set r
of reverse-and-complemented reads is obtained. Then all
suffixes of r are considered by increasing length and, by
performing backward extensions on the BWTof R, all the

Figure 3. Example of the de Bruijn graph for k = 3 of

the two reads ccgtac and catgtg. The nodes are the

sixteen k-mers reported on the left. Each arc is labelled
by the last character of its second node.
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reads overlapping with r are found (the goal is to find
overlaps between reads on opposite strands sharing a
prefix); (3) the set er of complemented reads is obtained.
Then all suffixes of er are considered by increasing length
and, by performing backward extensions on the BWT of
the reversed reads of R, all the reads overlapping with er
are found (the goal is to find overlaps between reads on
opposite strands sharing a suffix). The bidirectional BWT
is used to detect and output directly the irreducible arcs of
the string graph.
The pipeline of SGA has a preprocessing step for

filtering and trimming the input reads with multiple low-
quality or ambiguous base calls [15]. A preliminary FM-
index is built in order to correct errors using k-mer
frequencies. Then the string graph is computed. After
that, SGA determines contigs from the string graph and
then links them into scaffolds by using paired-end reads.
SGA allows to use Ropebwt2 [19] and SA-IS to index

the input reads. Ropebwt2 [19] (an in-memory imple-
mentation of BCR [18]) works well with short strings
(£ 200 bp), while SA-IS, implementing the suffix array
construction algorithm based on the induced sorting [37],
is slower but works for longer sequences.
LSG [30] is based on the BWT and FM-index of the

input reads. Its goal is to minimize the amount of data
maintained in Random Access Memory (RAM). LSG is
the first disk-based exact algorithm to construct a string
graph that does not require to have the whole original
dataset in main memory. LSG uses a slightly modified
version of BEETL as a preliminary indexing step on the
input reads in order to compute in external memory the
Generalized Suffix Array, the BWT and the LCP array of
the input reads. The LSG algorithm is based on two steps:
(1) computing the overlap graph, and (2) removing the
reducible (transitive) arcs. In the first step a single
synchronous scan of the BWT, the Generalized Suffix
Array, and the LCP array allows to compute all overlaps
that are of length at least lm (where lm is the minimum
length of an overlap), and to represent them as intervals of
the BWT (also called BWT intervals). The second step
starts from those intervals and, by a sequence of backward
extensions, computes the labels of the overlap graph and,
at the same time, produces only the irreducible arcs of the
string graph. The backward extensions of BWT intervals
are computed by using an external-memory approach
similar to the one presented in [38].
A variant of LSG is FSG [39] which queries the FM-

index of the reads to construct the string graph, without
the need of additional expensive data structures. A main
characteristics of FSG is that it performs only linear scans,
resulting in a cache-efficient implementation.
Fermi [36] is inspired by SGA and tailored for variant

calling. A main data structure of Fermi is a single
bidirectional FM-index, the so-called FMD-index which

is used to represent both DNA strands inside a unique
structure. The FMD-index is the FM-index of the
bidirectional collection of the input reads, interpreted as
the collection of the reads and their reverse-and-comple-
ment. Notice that the FMD-index merges into a unique
data structure the two FM-index structures of SGA. The
indexing phase is based on the SA-IS algorithm [37].

Using string graphs

In the ideal case, that is when reads do not have errors,
once we have the string graph, the assembled genome can
be obtained by building a traversal of the graph that
touches each vertex exactly once— a Hamiltonian path.
Unfortunately, to find a Hamiltonian path is an NP-hard
problem [40], at least in the worst case. When we also do
not have repeated regions, the string graph can have some
additional properties (they are acyclic) that make it much
easier to find a Hamiltonian path, but this is too strong of a
condition, therefore we need some heuristics to obtain the
assembly from the string graph.
With the above ideas in mind, we now show how these

string graph tools of the previous section perform in
practice, by comparing their running times and memory
as part of an entire pipeline aimed at assembling the
NA12878 sample of the 1000 Genomes Project read
group “20FUK”, which is composed of approximately
875 million reads, each of 101 bp in length. SGA required
1,112 minutes and 26 GB of RAM for the indexing phase,
and 4,145 minutes and 43 GB of RAM for the string
graph construction phase. LSG required 9,540 minutes
and 52 GB of RAM for the indexing phase, and 9,444
minutes and less than 1 GB of RAM for the string graph
construction phase. LSG and SGA share the assembly
phase which required 1,637 minutes and 63 GB of RAM.
On the other hand, Readjoiner completed the entire
pipeline in 713 minutes and 42 GB of RAM.

Representing a de Bruijn graph

Bloom filters and probabilistic representation

Conway and Bromage succinct data structure. In [41]
the authors propose the first memory efficient representa-
tion of a dBG. This method does not store the labels of the
nodes explicitly, since they can be inferred from the
edges. The approach works as follows. First, for each
node u, a vector of four bits (0 and 1) is created, such that
there exists one bit for each symbol s in the DNA
alphabet S = {a, c, g, t}. Such bit is set to 1 if the string
obtained by adding s at the end of the suffix of u of length
k – 1 is a k-mer, otherwise it is set to 0. All those vectors
are concatenated into a (unique) vector CB of bits
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according to the lexicographic order of the nodes (k-
mers): the identification of the segment related to a given
k-mer is performed on the basis of its rank. The vector CB
represents the edges of the dBG and, together with a
vector of integers that records, for each edge, the number
of occurrences of the string joining its two nodes, is a
succinct data structure which allows an efficient naviga-
tion of the graph using the so-called rank and select
queries. Since CB is sparse, it can be efficiently
compressed using state-of-the-art approaches. This struc-
ture leads to a memory occupation close to the
information-theoretical lower bound and experimental
results show that 28.5 bits per edge are required. As stated
by the authors, the main bottleneck of this approach is
sorting the nodes (or k-mers).
Minia. To further reduce the memory usage, Minia [42]

exploits the following main ideas: (1) use Bloom filters to
define probabilistic de Bruijn graphs, (2) store in main
memory a data structure for restricted queries on the de
Bruijn graph, such as specifying for each node the list of
neighbors, and then use disk memory for other queries
such as listing the nodes.
For each k-mer in the de Bruijn graph, the correspond-

ing bits in the Bloom filter are set to 1 and a traversal of
the graph is achieved by testing all the possible nodes that
can be reached by the current node. Clearly, since this
approach uses a probabilistic data structure, spurious
nodes can be found in the Bloom filter. Nevertheless, it is
easy to show that only false positive nodes can be added
to the graph. To avoid this problem, the authors propose to
store an additional data structure that contains all the false
positive nodes that can be reached by nodes in the de
Bruijn graph, and they provide a constant-memory
algorithm to compute them.
Using Bloom filters to store k-mers is extremely

efficient and the authors show that this data structure
leads to a memory occupation of 13 – 14 bits per edge.
Noting that the union of the false positive nodes is in

turn a set, the authors of [43] proposed to use Bloom
filters in a “cascading” way, storing in turn false positives
of each set in a smaller Bloom filter and directly storing
the false positives only when this set is adequately small.
Experimental analysis shows that using only 4 Bloom
filters in a cascading fashion leads to using between 30%
and 40% less memory.
ABySS 2.0. ABySS 2.0 [44], just as with Minia, uses a

Bloom filter representation of the de Bruijn graph. Its
innovative unitig assembly stage, which is performed on
the Bloom filter, allows to reduce the memory require-
ments by an order of magnitude, while maintaining results
comparable with existing assemblers. This aspect permits
the assembly of large genomes on a single machine. The
unitig phase extends (by using the same graph traversal of
Minia) solid reads, consisting entirely of solid k-mers

(that is, k-mers with an occurrence above a user-specified
threshold), left and right in order to create unitigs. Only
the nodes of the de Bruijn graph are stored in the Bloom
filter and (during the graph traversal) all four possible
neighbors of the current k-mer need to be queried. An
additional Bloom filter is employed to record k-mers
included in previous unitigs in order to avoid duplicate
unitigs: a solid read is extended if there is at least one k-
mer that is not present in the additional Bloom filter.

BWT based

DBGFM. A significant reduction in space is provided by
the approach in [45] that aims to efficiently enumerate all
the maximal simple paths in the dBG without loading the
whole graph in memory. DBGFM basically consists of an
FM-index storing the simple paths used to answer
membership and neighborhood queries. In [45] the
authors provide a novel low memory algorithm for the
enumeration of simple paths and a partitioning strategy
based on the usage of minimizers sorted by frequency,
showing that the dBG of the human genome can be stored
using 4.76 bits per base, providing good query perfor-
mance.
BOSS. A different approach to store de Bruijn graphs

has been proposed by Bowe et al. [46] with the
introduction of the BOSS data structure. The main idea
of BOSS is to store and compress only the labels of the
edges of a dBG using an FM-index, borrowing ideas from
indexes for texts. More precisely, the de Bruijn graph is
stored as an arrayW of |E| characters and a bit vector L of
size |E|. The arrayW lists the edge labels according to the
lexicographic order of the reverse k-mers associated to the
source node of the edges; clearly all labels of edges
outgoing from the same node will be consecutive inW. To
mark the consecutive labels related to the same source
node, the bit 1 in vector L is used to distinguish groups of
labels leaving distinct source nodes. Similarly to the FM-
index, BOSS allows to efficiently search patterns and k-
mers in the dBG and, just as for the BWT,W and L can be
easily compressed.
The original paper describing this approach allows to

store only a de Bruijn graph for a fixed k; later works
improved this result allowing to store variable order dBGs
[47,48] (i.e., all the dBGs of order between 1 and k) and
colored dBGs [49–51] (i.e., dBGs where each vertex is
associated to one or multiple colors).
Although BOSS and its extensions are extremely

efficient in space, their construction is not trivial for
huge graphs with billions of nodes. Indeed, efficiently
sorting k-mers and edges labels is a difficult task that
might lead to the saturation of the available RAM. To
overcome these limitations, recent works [52] proposed
new algorithms for the construction of BOSS that first
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build the data structure for small partitions of the graph
and then merge them together, without saturating the main
memory.

Using de Bruijn graphs

Repeats that are longer than k, but definitely shorter than a
read, affect de Bruijn graphs but not string graphs. In fact
if a repeat is such that there exists a read spanning the
repeat (a so called bridged repeat) such that the two
portions of the read preceding and following the read are
unique, then the string graph is the same as the one when
the repeat is not there, while the two de Bruijn graphs are
clearly different.
There are two main advantages of de Bruijn graphs:

(1) repeats (both long and short) are more easily
detectable, since they correspond to specific subgraphs
(called bubbles), and (2) given a de Bruijn graph, genome
assemblies correspond to traversals of the de Bruijn
graphs where each arc is visited exactly once, that is an
Eulerian tour [29]: the latter problem can be easily solved
in linear time [53].
Since dBGs for mammalian-sized genomes tend to be

very large (i.e., if k is equal to 25, the dBG of the human
genome has 4.8 billion nodes [41]), it is fundamental to
store them in some very efficient data structure. Notice
that a simple representation of such graph needs, for each
node, 56 bytes to store the k-mer string (assuming k£ 32)
and the four possible successor nodes. Therefore a total
memory of 268 GB is necessary for the human genome
(having 4.8 billion nodes). Moreover, assuming that each
node is stored in a hash table (otherwise we cannot find
each node), an extra 70 GB is needed [41]. Such a huge
memory usage is a concern for several genome assem-
blers. Indeed, the notion of compactedde Bruijn graph is
used to reduce the space: this is the graph obtained by
replacing all its maximal non branching paths from a
vertex u to a vertex v with a single edge (u, v), but the
compacted graph does not have some of the combinatorial
properties of the usual de Bruijn graph— recall that a
path in a graph is a sequence of vertices where only the
first and the last are repeated and it is non branching if its
vertices have indegree and outdegree one except for the
last and the first vertex.

ASSEMBLING LONG READS

The single-molecule sequencing technologies Pacific
Biosciences (PacBio, SMRT) and Oxford Nanopore
Technologies (ONT) are able to produce long reads of
10–100 kb, but have an error rate much larger (10%–
15%) than that of Illumina reads (smaller than 1%).
Therefore, long reads can simplify repeat detection and

analysis, but require different strategies to build overlap
and de Bruijn graphs.
For overlap graphs, an actual overlap between two

reads consists in a similar— but far from identical—
prefix-suffix pair. For de Bruijn graphs, the high error rate
produces spurious k-mers, disgregating the structure of
the graph. Therefore the main challenge that all tools in
this section have to face is either to quickly compute all
inexact overlaps, or to avoid the disgregation of the graph.
A typical initial step is read correction. To that purpose,
most assemblers use a strategy based on the analysis of k-
mers included in the reads. Another strategy is based on
hybrid approaches, where both short and long reads are
exploited.
Overlap detection in the OLC assembly methodology

for large genomes is still a major bottleneck in this
context. Whereas a linear time algorithm for building an
overlap graph exists for the case of exact overlap, when
we are interested in an overlap with errors, we are still far
from optimal algorithms. A more efficient and accurate
approach would be to compute the approximate prefix-
suffix relation among reads. In this direction, according to
our knowledge, the best current algorithmic solution is
Canu [54] which uses MHAP [55].
Unfortunately, the current methods essentially have to

resort to all-against-all read comparison— at least in the
worst case—which is computationally expensive, hence
limiting the applicability of the method.
Some ingredients are common to the various

approaches that are employed to compute the overlaps,
mainly the idea of finding seeds, that is exact short
substrings. However these seeds tend to be very short due
to the presence of errors, hence they might not give the
desired degree of precision. To overcome this problem,
some methodologies use local alignment procedures.
Those methods differ mainly in the data structures used
for finding seeds. An overview of leading read-to-read
overlap detection methods is given in [56], where a
comparison of performances is also provided. With the
improvements of long read sequencing technologies, we
expect an increase in the coverage in the near future—
while storage is not currently an issue for long reads
datasets, it is likely to become a factor.
In this section we describe a number of tools for

assembling long reads, summarizing them in Table 1.
Wtdbg2. Wtdbg2 [57] is a long-read assembler for

mammalian genomes (large genomes) that is tens of times
faster than other long-read assemblers with little compro-
mise on the quality results.
Wtdbg2 basically follows the OLC paradigm: it

performs first a fast all-vs-all read alignment and then a
layout based on a fuzzy de Bruijn graph. More in detail, it
splits the reads in chunks of 256 bp (bins) and builds a
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hash table having as keys the k-mers, occurring at least
twice and at most 1,000 times, and as values their
positions in the read bins. Then, the input reads are
considered, from the longest to the shortest, and all-vs-all
read alignments are computed by using the hash table and
by applying a dynamic programming (DP) algorithm; the
read binning limits the matrix dimension of the DP.
Finally, Wtdbg2 applies a layout algorithm based on a
fuzzy de Bruijn graph, which extends the definition of de
Bruijn graph in order to tackle noisy reads (avoiding an
error correction step). In this graph, a vertex is a k-bin,
that is a sequence of k consecutive bins, and the edges are
determined by the alignments computed by the previous
step and takes into account the inaccuracy of the input
reads.
HINGE. HINGE [58] applies an OLC approach,

therefore it builds an overlap graph. In the first phase it
obtains the pairwise overlap information by using
DALIGNER [59] (and at the same time it discards
chimeric reads, that is, reads resulting from sequencing
errors and composed of different parts of the genome), but
its main novelty consists of its layout phase. In fact,
repeats are enriched with hinges, that is short substrings
that immediately precede or follow the repeat. An analysis
of hinges is coupled with the best-overlap graph strategy
[60] to construct an overlap graph that aims at reaching
the error robustness of the OLC approach and the repeat
resolution capability of de Bruijn graphs.
ABruijn. The ABruijn assembler [61] is based on a

generalization of the de Bruijn graph called the A-Bruijn
graph. The A-Bruijn graph AB(R, C) for a set R of reads is
constructed just as the de Bruijn graph, however C can be
any substring-free collection of strings (referred to as a
collection of solid strings). The de Bruijn graph DB(R, k)
is identical to the A-Bruijn graph AB(Sk–1), where Sk–1 is
the set of all (k – 1)-mers in the alphabet S of R.
The ABruijn assembler starts with the selection of solid

strings. Let a (k, t)-mer be a k-mer that appears at least t
times in the set R of reads. Parameter t is then selected by
computing the number f of k-mers with frequencies
exceeding t, and selecting a maximum t such that f

exceeds the estimated genome length. The A-Bruijn graph
is then constructed based on this collection of (k, t)-mers
as the collection of solid strings.
A path in this A-Bruijn graph corresponds to an error-

prone draft genome (or contig). Since paths are error-
prone, two paths in this graph are said to overlap if they
have a common jump-subpath (given a parameter jump)
of a given minimum span, as computed by a dynamic
programming algorithm. Then each path is extended by
merging two overlapping paths, provided that the
extension is supported by a minimum number of other

paths— the idea being that spurious reads will have low
support. Another problem is when a growing path ends in
a long repeat. This is overcome by computing a support
graph, similar to the strategy used in exSPAnder [62], but
slightly more complex, since the A-Bruijn graph does not
always reveal the local repeat structure like in the case of
the de Bruijn graph.
After the resulting draft genome is constructed above,

the ABruijn assembler has further functionality for
correcting errors in this draft genome, for iteratively
refining it, etc.
Falcon. The FALCON assembler [63] follows the OLC

approach, building a string graph by using DALIGNER
[59] to obtain overlaps between the reads. An overlap
filtering step is applied to remove contained reads or reads
that appear to be from high copy-repetitive regions. The
string graph is built with a slight variation of the method
described in [27].
The layout and the consensus phases are tweaked to

infer both haplotypes, according to the hierarchical
genome assembly process (HGAP) [64]. FALCON begins
by using reads to construct a string graph that contains
sets of “haplotype-fused” contigs as well as bubbles
representing divergent regions between homologous
sequences [65]. Then, FALCON-Unzip identifies read
haplotypes using phasing information from heterozygous
positions that it identifies. Phased reads are then used to
assemble haplotigs and primary contigs (backbone
contigs for both haplotypes) that form the final diploid
assembly with phased single-nucleotide polymorphisms
(SNPs) and structural variants (SVs).
Canu. Canu [54] builds upon the Celera assembler

[66], hence following its OLC approach. To avoid the
expensive all-against-all comparison for the overlap
phase, Canu first selects a pair of reads that might
overlap, then those pairs are analyzed to determine if the
overlap is actually good enough.
The first part is especially innovative, since it is based

on the tf-idf measure [67] that has originated in
Information Retrieval to find which words are most
interesting in a set of documents. In Canu, that measure is
used to find which k-mers are most useful to determine if
two reads actually overlap— e.g., k-mers of low com-
plexity or exceedingly frequent are not useful.
Miniasm. Miniasm [68] builds an overlap graph by

mapping all pairs of reads with Minimap [68]— a fast
aligner inspired from MHAP [55] and DALIGNER [59].
The main idea is to use the MinHash sketch [23] to have a
small, fixed-size and efficient way to compare two sets of
k-mers. Moreover, it uses minimizers [24] to further
reduce the memory needed without an excessive impact
on the quality of the overlap detection.
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OPEN PROBLEMS AND FUTURE
DIRECTIONS

The construction of assembly graphs is a source of
inspiration to new challenges and problems for the design
of novel data structures and algorithms in bioinformatics.
In this section, we discuss the algorithmic aspects of
building assembly graphs, in general, but also in the
context of when the input is either short or long reads. In
the following we list some of the main computational
challenges arising from the use of short or long reads in
the assembly process.
Since short read technologies have existed for decades

before the advent of long reads, the techniques for
assembling short reads are much more developed in this
first context. In particular, since short read datasets
contain too many reads for doing an all-against-all
comparison (typically employed in the OLC framework),
the assembly based on k-mers is a popular approach in
this context— especially given the very small, often less
than 1%, error rate of short read sequencing technologies,
such as Illumina. On the contrary, since long read
technologies such as PacBio and ONT, have error rates
of 10%–15%, k-mers are often not reliable enough, hence
all approaches tend to take the OLC approach (see Table
1)— especially given that long read datasets have much
fewer reads (lower coverage) than short read datasets.
This is with the exception of ABruijn [61], which is an
interesting approach that leverages the advantage of both
k-mers and OLC approaches for long reads.

Open problem 1: approximate prefix-suffix relation
on a set of reads

Given a collection of reads, provide a better algorithm
and an efficient implementation to compute approximate
prefix-suffix relation among reads. To the best of our
knowledge, most recent advances on this topic are in [69].
Since the main limitation of long reads is the large
computational costs of computing the overlap of reads, a
high priority challenge is to reduce the complexity of

implementing the all-against-all paradigm. More pre-
cisely, such complexity could be reduced for example by
avoiding the comparison of all-against-all reads by
applying clustering strategies to reduce the data set or
by extending to long reads techniques such as the linear
time computation over short reads of the prefix-suffix
relation by the FM-index. Indeed, the FM-index has
allowed to lower the quadratic complexity bound required
by the all-against-all comparison of reads.

Open problem 2: overlap graph on a set of long
reads by indexing of reads

Given a collection of long reads, provide an algorithm
and an efficient implementation to compute the overlap
graph for long reads after error correction, or compute an
approximate overlap. The approach discussed in [70]
does not seem to be practical for long reads. Exploiting
the FM-index on long reads is quite challenging, due to
the high error rate which make it not that palatable for
computing the approximate overlap of reads.
On the other hand, the computation of the overlap

between long reads could take advantage of some known
techniques for indexing k-mers. In this direction, BASE
[71], for example, is a tool exploring the indexing of reads
by a bidirectional BWT for discovering seeds that are
common to reads. Though BASE has been experimented
only on short reads, the authors claim their method can be
extended to long reads.

Open problem 3: memory efficient representation of
a de Bruijn graph

Finding a memory efficient representation of de Bruijn
graphs. Concerning the memory usage, the number of k-
mers generated from reads increases with the length of
reads and the coverage, and RAM usage is an issue for
de Bruijn graph assemblers. Indeed, approximately
2(k + 1)G Gigabytes of RAM are required to store a k-
mer table of a genome of size G [72]. As reported in [72],
using de Bruijn graphs can be problematic with high

Table 1 List of tools on long reads
Tool Main strategy Overlap computation Error-aware Repeat-aware

Wtdbg2 OLC Pairwise alignments

(k-mers+ dynamic programming)

Y N

HINGE OLC Pairwise alignments (DAligner) Y Y

ABruijn k-mers k-mers (based on selection of solid strings) Y Y

Falcon OLC Pairwise alignments (DAligner) Y Y

Canu OLC Pairwise alignments (tf-idf measure) Y Y

Miniasm OLC Pairwise alignments (MinHash sketch) N N

This table summarizes the main properties of the tools for assembling from long reads that we detail in this article. Note that error- and repeat-aware

denote whether the tool does something to handle, respectively, the errors and repeats which are present in the input long reads. For example, Wtdbg2

handles errors by using a fuzzy de Bruijn graph, while HINGE handles repeats by enriching them with so-called hinges.
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coverage or highly repeated genomes— in the first case
the use of RAMmemory can become prohibitive for large
genomes, while in the second case we need to analyze the
graph to disambiguate repeats. The first limitation is
partially overcome by (1) using string/overlap graph
based assemblers of short reads, since, according to [73],
the usage of RAM memory is an order of magnitude
lower than the one required by de Bruijn graphs at the
same coverage, and (2) using space-efficient representa-
tions of de Bruijn graphs that allow to compute and store
them on middle-end machines at the cost of increasing the
query time [42]. The use of the BWTand of the FM-index
to index de Bruijn graphs has opened new research
directions aiming to reduce space and time usage in the
construction as well as in the operations on the graphs.
The same ideas have inspired some techniques to index
and construct pan-genome graphs, such as variation
graphs [74], and could be further investigated, especially
in the context of de novo assembly. To overcome the
problem of repetitive regions in the genome, it seems that
long reads are the most promising direction.

Open problem 4: colored de Bruijn graphs

Using and efficiently representing colored de Bruijn
graphs. Another promising research direction is colored
de Bruijn graphs, which is a new topic with several
applications, especially in metagenomics and microbial
pan-genomes. While some specific data structures for
colored de Bruijn graphs have been recently developed
[75,76], their use in assemblers is not yet fully explored.
Still, they offer novel ideas that are quite promising.

Open problem 5: variable order de Bruijn graphs

Variable order de Bruijn graphs and string/overlap
graphs in capturing variable length overlaps. The
accuracy of the assembly results is another aspect to be
taken into consideration. De Bruijn graph assemblers are
used in the most popular short read assemblers, since they
provide accurate assembly, and moreover, the computa-
tional costs have been constantly reduced in the most
recent implementations. In the previous sections we have
discussed novel data structures that lead to a theoretical
improvement of space and time representation of de
Bruijn graphs. Some of the previous discussed methods
have already been implemented in a de novo assembler,
while others still wait for an implementation and a
practical analysis of their potential. Mainly, Minia [42] is
a complete assembly tool, while DBGFM has been tested
by integrating the de Bruijn construction phase into
ABySS [77]. These implementations perform well in
terms of space and time. However, it would be useful to
investigate deeper whether those methods could produce
good quality assemblies besides their theoretical results.

Notice that overlap graphs correspond to variable order
de Bruijn graphs. Thus in order to fill the gap between the
accuracy of de Bruijn graphs assemblers and overlap
graph assemblers, it would be necessary to better
understand the relationship between de Bruijn graphs of
variable order and overlap graphs. A first step in this
direction is the notion of A-Bruijn graph introduced by
ABrujin [61]— such graph can be seen as a type of
variable-order dBG based on a so-called set of solid
strings.
Mainly, the question if variable order de Bruijn graphs

have the same capability of string graphs in capturing
variable length overlaps or overlap graphs contain more
information than de Bruijn graphs, is a question that
deserves to be properly investigated.
The recent results on the construction of the extended

BWT via merging partial BWTs originally suggested in
[78] have led also to efficient algorithms for merging de
Bruijn graphs [52]. In this case, the main open problem is
to investigate merging variable order de Bruijn graphs.

Open problem 6: large scale assembly with long
reads

Using long reads in order to assemble large genomes.
Concerning the assembly of long reads, current tools have
been mainly used to assemble either single chromosomes
with high precision (e.g., Canu [54]) or small organ-
isms—mainly bacteria and viruses. Still, it is an open
problem the routine application of assembly tools for long
reads to human genomes.

Open problem 7: building a pan-genome graph

Assembling a graph representing several genomes. Some
recent papers have demonstrated how to efficiently
construct the assembly graph for the whole genome
sequence setting [79–81] for short reads. The fastest
algorithm to date was able to process seven whole
mammalian genomes in under eight hours [82]. This
makes feasible to attack another problem: pan-genome
assembly [83], that is the construction of the assembly
graph of several individual genomes.
An interesting approach that can be a direction to

follow is TwoPaCo [79]: a novel algorithm for construct-
ing de Bruijn graphs from whole genome sequences. The
authors of [79] demonstrate how to construct the graph for
100 human genomes in less then a day, and eight primates
in less than two hours, on a typical server-grade machine.
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