
Document Databases

NoSQL Databases

Lecture 6 of NoSQL Databases (PA195)
David Novak & Vlastislav Dohnal

Faculty of Informatics, Masaryk University, Brno

Agenda

● Text (Document) Data Types
○ JSON: JavaScript Object Notation
○ XML: usage and comparison with JSON

● Document Databases: MongoDB
○ Database schema: Design
○ Using MongoDB: Updates, Queries, Indexes
○ Behind the scene

■ BSON format, Distribution, Replication, Transactions, ...

2

NoSQL Databases and Data Types

1. Key-value stores:
○ Can store any (text or binary) data

■ often, if using JSON data, additional functionality is available

2. Document databases
○ Structured text data - Hierarchical tree data structures

■ typically JSON, XML

3. Column-family stores
○ Rows that have many columns associated with a row key

■ can be written as JSON

3

Part 1: Document Data Types

4

Data Formats

● Binary Data (previous lecture)
○ often, we want to store objects (class instances)
○ objects can be binary serialized (marshalled)

■ and kept in a key-value store

○ there are several popular serialization formats
■ Protocol Buffers, Apache Thrift

● Structured Text Data
○ JSON, BSON (Binary JSON)

■ JSON is currently number one data format used on the Web

○ XML: eXtensible Markup Language
○ RDF: Resource Description Framework

5

JSON: Basic Information

● Text-based open standard for data interchange
○ Serializing and transmitting structured data
○ ECMA-404 standard

● JSON = JavaScript Object Notation
○ Originally specified by Douglas Crockford in 2001
○ Derived from JavaScript scripting language
○ Uses conventions of the C-family of languages

● Filename: *.json
● Internet media (MIME) type: application/json
● Language independent https://www.json.org 6

https://www.json.org/

JSON:Example

source: I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a NoSQL databáze. Praha: Grada Publishing, 2015. 7

JSON: Data Types (1)

● object – an unordered set of name:value pairs
○ these pairs are called properties (members) of an object
○ syntax: { name: value, name: value, name: value, ...}

● array – an ordered collection of values (elements)
○ syntax: [comma-separated values]

8

JSON: Data Types (2)

● value – string in double quotes / number / true
or false (i.e., Boolean) / null / object / array

9

JSON: Data Types (3)

● string – sequence of zero or more Unicode
characters, wrapped in double quotes
○ Backslash escaping

10

JSON: Data Types (4)

● number – like a C or Java number
○ Integer or floating-point
○ Octal and hexadecimal formats are not used

11

JSON Properties

● There is no way to write comments in JSON
○ Originally, there was but it was removed for security

● No way to specify precision/size of numbers
○ It depends on the parser and the programming language

● There exists a standard “JSON Schema”
○ A way to specify the schema of the data
○ Field names, field types, required/optional fields, etc.
○ JSON Schema is written in JSON, of course

■ see example below
12

JSON Schema: Example

source: I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a NoSQL databáze. Praha: Grada Publishing, 2015. 13

Document with JSON Schema

source: I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a NoSQL databáze. Praha: Grada Publishing, 2015. 14

XML: Basic Information

● XML: eXtensible Markup Language
○ W3C standard (since 1996)

● both human and
machine readable

● example:

source: http://en.wikipedia.org/wiki/XML 15

XML: Features and Comparison

● Standard ways to specify XML document schema:
○ DTD, XML Schema (XSD), etc.
○ concept of Namespaces; XML editors (for given schema)

● Technologies for parsing: DOM, SAX
● Many associated technologies:

○ XPath, XQuery, XSLT (transformation)

● XML is great for configurations, meta-data, etc.
● XML databases are mature, not considered NoSQL
● Currently, JSON format rules:

○ compact, easier to write, has all features typically needed
16

Part 2: Document Databases

17

Document Databases: Fundamentals

● Basic concept of data: Document

● Documents are self-describing pieces of data
○ Hierarchical tree data structures
○ Nested associative arrays (maps), collections, scalars
○ XML, JSON (JavaScript Object Notation), BSON, …

● Documents in a collection should be “similar”
○ Their schema can differ

● Often: Documents stored as values of key-value
○ Key-value stores where the values are examinable
○ Building search indexes on various keys/fields of the value 18

Why Document Databases

● XML and JSON are popular for data exchange
○ Recently mainly JSON

● Data stored in document DB can be used directly

● Databases often store objects from memory
○ Using RDBMS, we must do Object Relational Mapping (ORM)

■ ORM is relatively demanding

○ JSON is much closer to the structure of memory objects
■ It was originally for JavaScript objects
■ Object Document Mapping (ODM) is faster

19

Document Databases: Representatives

Ranked list: http://db-engines.com/en/ranking/document+store

MS Azure

DocumentDB

20

http://db-engines.com/en/ranking/document+store

Part 2.1: MongoDB - Basics & Querying

21

MongoDB

● Initial release: 2009
○ Written in C++
○ Open-source
○ Cross-platform

● JSON documents
● Basic features:

○ High performance – many indexes
○ High availability – replication + eventual consistency +

automatic failover
○ Automatic scaling – automatic sharding across the cluster
○ MapReduce support

https://www.mongodb.com/ 22

https://www.mongodb.com/

MongoDB: Terminology

● each JSON document:
○ belongs to a collection
○ has a field _id

■ unique within the collection

● each collection:
○ belongs to a “database”

RDBMS MongoDB

database instance database

schema ---

table collection

row document

rowid _id

https://www.mongodb.com/ 23

https://www.mongodb.com/

Documents

● Use JSON for API communication
● Internally: BSON

○ Binary representation of JSON
○ For storage and inter-server communication

● Document has a maximum size: 16MB (in BSON)
○ Not to use too much RAM, bandwidth
○ GridFS tool can divide larger files into fragments

24

Document Fields

● Every document must have the field _id
○ Used as a primary key
○ Unique within the collection
○ Immutable
○ Any type other than an array
○ Can be generated automatically

● Restrictions on field names:
○ The field names cannot start with the $ character

■ Reserved for operators

○ The field names cannot contain the . character
■ Reserved for accessing sub-fields

25

Database Schema

● Documents have flexible schema
○ Collections do not enforce specific data structure
○ In practice, documents in a collection are similar

● Key decision of data modeling:
○ References vs. embedded documents

○ In other words: Where to draw lines between aggregates
■ Structure of data
■ Relationships between data

26

Schema: Embedded Docs

● Related data in a single document structure
○ Documents can have subdocuments (in a field or array)

https://www.mongodb.com/ 27

https://www.mongodb.com/

Schema: Embedded Docs (2)

● Denormalized schema
● Main advantage:

Manipulate related data in a single operation
● Use this schema when:

○ One-to-one relationships: one doc “contains” the other
○ One-to-many: if children docs have one parent document

● Disadvantages:
○ Documents may grow significantly during the time
○ Impacts both read/write performance

■ Document must be relocated on disk if its size exceeds allocated space
■ May lead to data fragmentation on the disk 28

Schema: References

https://www.mongodb.com/

● Links/references from one document to another
● Normalization of the schema

29

https://www.mongodb.com/

Schema: References (2)

● More flexibility than embedding
● Use references:

○ When embedding would result in duplication of data
■ and only insignificant boost of read performance

○ To represent more complex many-to-many relationships
○ To model large hierarchical data sets

● Disadvantages:
○ Can require more roundtrips to the server

■ Documents are accessed one by one

30

Querying: Basics

● Mongo query language
● A MongoDB query:

○ Targets a specific collection of documents
○ Specifies criteria that identify the returned documents
○ May include a projection to specify returned fields
○ May impose limits, sort, orders, …

● Basic query - all documents in the collection:
db.users.find()

db.users.find({})

31

Querying: Example

https://www.mongodb.com/ 32

https://www.mongodb.com/

Querying: Selection

db.inventory.find({ type: "snacks" })

● All documents from collection inventory where the type field
has the value snacks

db.inventory.find({ type: { $in: ['food',

'snacks'] } })

● All inventory docs where the type field is either food or snacks

db.inventory.find({ type: 'food', price: {

$lt: 9.95 } })

● All ... where the type field is food and the price is less than 9.95
33

Inserts

db.inventory.insertOne({ _id: 10, type:

"misc", item: "card", qty: 15 })

● Inserts a document with three fields into collection inventory
○ User-specified _id field

db.inventory.insertOne({ type: "book", item:

"journal" })

● The database generates _id field

$ db.inventory.find()

{ _id: ObjectId("58e209ecb3e168f1d3915300"),

type: "book", item: "journal" }
34

Updates

db.inventory.updateMany(

{ type: "book", item : "journal" },

{ $set: { qty: 10 } },

{ upsert: true })

● Finds all docs matching query
{ type: "book", item : "journal" }

● and sets the field { qty: 10 }

● upsert: true

○ if no document in the inventory collection matches
○ creates a new document (generated _id)

■ it contains fields _id, type, item, qty 35

MapReduce
collection "accesses":

{

"user_id": <ObjectId>,

"login_time": <time_the_user_entered_the_system>,

"logout_time": <time_the_user_left_the_system>,

"access_type": <type_of_the_access>

}

● How much time did each user spend logged in

○ Counting just accesses of type “regular”

db.accesses.mapReduce(

function() { emit (this.user_id, this.logout_time - this.login_time); },

function(key, values) { return Array.sum(values); },

{

query: { access_type: "regular" },

out: "access_times"

}

)

36

In JavaScript

Part 2.2: MongoDB - Indexes

Indexes

● Indexes are the key for MongoDB performance
○ Without indexes, MongoDB must scan every document in a

collection to select matching documents

● Indexes store some fields in easily accessible form
○ Stores values of a specific field(s) ordered by the value

● Defined per collection
● Purpose:

○ To speed up common queries
○ To optimize performance of other specific operations

38

Indexes: Example of Use

https://www.mongodb.com/ 39

https://www.mongodb.com/

Indexes: Example of Use (2)

● The index can be traversed in order to return
sorted results (without sorting)

https://www.mongodb.com/ 40

https://www.mongodb.com/

Indexes: Example of Use (3)

● MongoDB does not need to inspect data outside
of the index to fulfill the query

http://www.mongodb.org/ 41

http://www.mongodb.org/

Index Types

● Default: _id
○ Exists by default

■ If applications do not specify _id when inserting a doc, it is created.

○ Unique

● Single Field
○ User-defined indexes on a single field of a document

● Compound
○ User-defined indexes on multiple fields

● Multikey index
○ To index the content stored in arrays
○ Creates separate index entry for each array element

42

Index Types (2)

● Index on score
field (ascending)

https://www.mongodb.com/

● Compound Index
on userid
(ascending) AND
score field
(descending)

● Multikey index on
the addr.zip field

43

https://www.mongodb.com/

Index Types (3)

● Ordered Index
○ B+-Tree (see above)

● Hashed Indexes
○ Fast O(1) indexes the hash of the value of a field

■ Only equality matches

● Geospatial Index (operators docs)
○ 2d indexes = use planar geometry when returning results

■ For data representing points on a two-dimensional plane

○ 2dsphere indexes = spherical (Earth-like WGS84) geometry
■ For data representing latitude, longitude

● Text Indexes
○ Searching for string content in a collection 44

https://docs.mongodb.com/manual/reference/operator/query-geospatial/

Part 2.3: MongoDB - Behind the Scene

MongoDB: Behind the Scene

● BSON format
● Distribution models

○ Replication
○ Sharding
○ Balancing

● MapReduce
● Transactions
● Journaling

46

BSON (Binary JSON) Format

● Binary-encoded serialization of JSON documents
○ Representation of documents, arrays, JSON simple data

types + other types (e.g., Date and BinData)

https://www.bsonspec.org/ 47

Value length in bytes

Data type

(string, here)

64b floating

point type 32b int type

https://www.bsonspec.org/

BSON: Basic Types

● byte – 1 byte (8-bits)
● int32 – 4 bytes (32-bit signed integer)
● int64 – 8 bytes (64-bit signed integer)
● double – 8 bytes (64-bit IEEE 754 floating point)

http://www.bsonspec.org/ 48

http://www.mongodb.org/

BSON Grammar

document ::= int32 e_list "\x00"

● BSON document
● int32 = total number of bytes in document

e_list ::= element e_list | ""

● Sequence of elements

http://www.bsonspec.org/ 49

http://www.mongodb.org/

BSON Grammar (2)

element ::= "\x01" e_name double

| "\x02" e_name string

| "\x03" e_name document

| "\x04" e_name document

| "\x05" e_name binary

| …

Floating point
UTF-8 string
Embedded document
Array
Binary data
…

e_name ::= cstring

● Field key

cstring ::= (byte*) "\x00"

string ::= int32 (byte*) "\x00"

etc….

50

Data Replication

● Master/slave replication
● Replica set = a group of

instances that host the
same data set
○ primary (master) – handles

all write operations
○ secondaries (slaves) –

apply operations from the
primary so that they have
the same data set

51

Replication: Read & Write

● Write operation:
1. Write operation is applied on the primary
2. Operation is recorded to primary’s oplog (operation log)
3. Secondaries replicate the oplog + apply the operations to

their data sets

● Read: All replica set members can accept reads
○ By default, application directs its reads to the primary

■ Guaranties the latest version of a document
■ Decreases read throughput

○ Read preference mode can be set
■ See below

52

Replication: Read Modes

Read Preference

Mode

Description

primary operations read from the primary of the replica set

primaryPreferred operations read from the primary, but if unavailable,

operations read from secondary members

secondary operations read from the secondary members

secondaryPreferred operations read from secondary members, but if

none is available, operations read from the primary

nearest operations read from the nearest member (= shortest

ping time) of the replica set

53

Replica Set Elections

● If the primary
becomes unavailable,
an election
determines a new
primary
○ Elections need some

time
○ No primary =>

no writes

54

Replica Set: CAP

● Let us have three nodes in the replica set
○ Let’s say that the master is disconnected from the other two

■ The distributed system is partitioned

○ The two slaves “think” that the master failed
■ Because they form a partition with more than half of the nodes
■ And elect a new master

○ The master finds out, that it is alone
■ Specifically, that can communicate with less than half of the nodes
■ And it steps down from being master (handles just reads)

● In case of just two nodes in RS
○ Both partitions will become read-only

■ Similar case can occur with any even number of nodes in RS

○ Therefore, we can always add an arbiter node to even-sized
RS

55

Sharding

● MongoDB enables
collection partitioning
(sharding)

56

Collection Partitioning

● Mongo partitions collection’s data by the shard key
○ shard key = field(s) that exist in each document in the

collection, it is indexed
■ Since Mongo 4.2, the value is mutable
■ Since Mongo 4.4, the shard key can be missing -> NULL is then used

○ Divided into chunks, distributed across shards
■ Range-based partitioning
■ Hash-based partitioning

○ When a chunk grows beyond
the size limit, it is split
■ Metadata change, no data migration

● Data balancing:
○ Background chunk migration 57

Sharding: Components

● MongoDB runs in cluster of different node types:
● Shards – store the data

○ Each shard is a replica set
■ Can be a single node

● Mongos (Query routers) – interface btw. client
applications and sharded cluster
○ Direct operations to the relevant shard(s)

■ + return the result to the client

○ More than one => to divide the client request load

● Config servers – store the cluster’s metadata
○ Mapping of the cluster’s data set to the shards
○ Recommended number: 3 58

Sharding: Diagram

59

Journaling

● Write operations are applied in memory and into
a journal before done in the data files (on disk)
○ To restore a consistent state after a hard shutdown
○ Can be switched on/off

● Journal directory – holds journal files
● Journal file = write-ahead redo logs

○ Append only file
○ Deleted when all the writes are durable
○ When size > 1GB of data, MongoDB creates a new file

■ The size can be modified

● Clean shutdown removes all journal files 60

$isolated operator

is deprecated

Transactions

● Write ops: atomic at the level of single document
○ Including nested documents
○ Sufficient for many cases, but not all
○ When a write operation modifies multiple documents,

other operations may interleave

● Transactions: (docs)
○ Isolation of a write operation that affects multiple docs

db.foo.update({ field1 : 1 , $isolated : 1 }, { $inc

: { field2 : 1 } } , { multi: true })

○ Two-phase commit
■ Multi-document updates
■ In a session (.start/endSession), do .start/abort/commitTransaction 61

https://docs.mongodb.com/manual/core/transactions/

Summary

● Concepts of text documents
○ JSON vs. XML
○ binary format of JSON

● MongoDB principles
○ data manipulation
○ replication
○ distribution
○ transactions

62

Questions?

Please, any questions? Good question is a gift...

Spotted a bug/typo? Report it please.

63

References

● I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a

NoSQL databáze. Praha: Grada Publishing, 2015. 288 p.

● Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A

Brief Guide to the Emerging World of Polyglot

Persistence. Addison-Wesley Professional, 192 p.

● RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040:

Big Data Management and NoSQL Databases

● MongoDB Manual: http://docs.mongodb.org/manual/

64

	Snímek 1: NoSQL Databases
	Snímek 2: Agenda
	Snímek 3: NoSQL Databases and Data Types
	Snímek 4: Part 1: Document Data Types
	Snímek 5: Data Formats
	Snímek 6: JSON: Basic Information
	Snímek 7: JSON:Example
	Snímek 8: JSON: Data Types (1)
	Snímek 9: JSON: Data Types (2)
	Snímek 10: JSON: Data Types (3)
	Snímek 11: JSON: Data Types (4)
	Snímek 12: JSON Properties
	Snímek 13: JSON Schema: Example
	Snímek 14: Document with JSON Schema
	Snímek 15: XML: Basic Information
	Snímek 16: XML: Features and Comparison
	Snímek 17: Part 2: Document Databases
	Snímek 18: Document Databases: Fundamentals
	Snímek 19: Why Document Databases
	Snímek 20: Document Databases: Representatives
	Snímek 21: Part 2.1: MongoDB - Basics & Querying
	Snímek 22: MongoDB
	Snímek 23: MongoDB: Terminology
	Snímek 24: Documents
	Snímek 25: Document Fields
	Snímek 26: Database Schema
	Snímek 27: Schema: Embedded Docs
	Snímek 28: Schema: Embedded Docs (2)
	Snímek 29: Schema: References
	Snímek 30: Schema: References (2)
	Snímek 31: Querying: Basics
	Snímek 32: Querying: Example
	Snímek 33: Querying: Selection
	Snímek 34: Inserts
	Snímek 35: Updates
	Snímek 36: MapReduce
	Snímek 37: Part 2.2: MongoDB - Indexes
	Snímek 38: Indexes
	Snímek 39: Indexes: Example of Use
	Snímek 40: Indexes: Example of Use (2)
	Snímek 41: Indexes: Example of Use (3)
	Snímek 42: Index Types
	Snímek 43: Index Types (2)
	Snímek 44: Index Types (3)
	Snímek 45: Part 2.3: MongoDB - Behind the Scene
	Snímek 46: MongoDB: Behind the Scene
	Snímek 47: BSON (Binary JSON) Format
	Snímek 48: BSON: Basic Types
	Snímek 49: BSON Grammar
	Snímek 50: BSON Grammar (2)
	Snímek 51: Data Replication
	Snímek 52: Replication: Read & Write
	Snímek 53: Replication: Read Modes
	Snímek 54: Replica Set Elections
	Snímek 55: Replica Set: CAP
	Snímek 56: Sharding
	Snímek 57: Collection Partitioning
	Snímek 58: Sharding: Components
	Snímek 59: Sharding: Diagram
	Snímek 60: Journaling
	Snímek 61: Transactions
	Snímek 62: Summary
	Snímek 63: Questions?
	Snímek 64: References

