Research "How to do cool stuff and get paid for it"

Today's Speakers

Complex data

<image>

David Procházka

Learned Metric Index

Jaroslav Oľha

AlphaFind

PhD study

Terézia Slanináková

Miriama Jánošová

What is research?

Working on cutting edge things

Staying abroad

Programming

Realizing your ideas What is research? Teaching*

Presenting

Doing cool stuff

Making friends

Creating diagrams

Supervising students*

Designing experiments

Going to conferences

Being paid

Writing publications

Being creative

Meeting clever people

What is research?

Doing cool stuff

How to make cool stuff? Either find something you think is cool, or find someone who makes cool things.

CODA Research GroupWe find patterns in data and mine information from complexity.

- We use Python, Rust, PyTorch, Docker, Kubernetes, JupyterHub, ...
- We work with images, proteins, human motion, ...
- We cooperate with partners from Switzerland, Denmark, Germany, ...
- We organize invited talks from Kiwi.com, JAMF, SAP, ...

Complex Data

big Today's data is complex and that is a problem... abundant

How does **Spotify** re How does **Netflix** determin

How does **Spotify** recommend **similar songs**?

How does **Netflix** determine what should you watch next?

Everything can be a vector...

Complex object

Embedding model

(0.9259, -0.4775, ..., 0.7019, -0.5630)

High-dimensional dense vector embedding

Dimensionalit

Data Source

DINOv2 (image)

CLIP (image + text description

> Llama 3 (text)

y of Embeddings					
	Dimensionality				
	384 – 1,536				
)	512 – 1,024				
	4,096 – 16,384				

(0.9259, -0.4775, ..., 0.7019, -0.5630) (7.1041, -3.8554, ..., -12.5602, 0.9923) (-2.5482, 0.2563, ..., 3.002, 8.8223) (3.8520, -39.459, ..., 15.3019, -1.0592) (1.3222, -0.8269, ..., 7.3929, 4.6901)

•••

1,000,000,000,000+ vectors

1,000+ dimensions

4+ TB of memory

Any two vectors have similar distance

Low-dimensional dataset

Source: Chávez et al., Searching in metric spaces, 2001

VS High-dimensional dataset

Curse of Dimensionality

- 1. Problems get exponentially harder
- 2. Any two vectors have similar distance
- 3. All vectors are near orthogonal
- 4. No notion of locality
- 5. No clusters

ly harder ilar distance

(0.9259, -0.4775, ..., 0.7019, -0.5630) (7.1041, -3.8554, ..., -12.5602, 0.9923) (-2.5482, 0.2563, ..., 3.002, 8.8223) (3.8520, -39.459, ..., 15.3019, -1.0592) (1.3222, -0.8269, ..., 7.3929, 4.6901)

•••

1,000,000,000,000+ vectors

1,000+ dimensions

4+ TB of memory

Learned Metric Index Next-generation indexing for high-dimensional data

Learned Indexing for 1D data Kraska et al. 2018

tree \rightarrow model

Figure 1: Why B-Trees are models

Learned Indexing for 1D data Kraska et al. 2018

Why? Because we could reduce O(log n) to O(1).

Learned Indexing There is more to it

One-dimensional data 1D

Multi-dimensional data 2 to 20D

High-dimensional data 20D+

Learn cumulative distribution function.

Transform into 1D case.

Learn existing clustering or iteratively improve one.

Dimensionalit

Data Source

DINOv2 (image)

CLIP (image + text description

> Llama 3 (text)

y of Embeddings					
	Dimensionality				
	384 – 1,536				
)	512 – 1,024				
	4,096 – 16,384				

Learned Indexes for High-Dimensional Data Learned Metric Index, NeuralLSH, BLISS, BATL, FLEX, ...

A machine learning model solving a supervised classification problem: "Where are the most similar objects?"

AlphaFind Redefining what it means to efficiently search within 214M proteins

AlphaFind: Similarity search applied to 214-million proteins

T. Slaninakova, 27.9.2024

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

The why

- Proteins == chains of amino acids folded in 3D space
- The shape determines the function \bullet
- Use case for similarity: drug design

The "can-l-do-sim-search-on-it" checklist

- 1. There is a ground truth we can rely on
 - We know what similar and not similar look like
 - Ideally, we can quantify it
- 2. We can represent the data as vectors

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

The "can-l-do-sim-search-on-it" checklist

- 1. There is a ground truth we can rely on
 - We know what similar and not similar look like
 - Ideally, we can quantify it
 - Necessary

2. We can represent the data as vectors

- Optional, but saves us a lot of headache

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

The "can-l-do-sim-search-on-it" checklist

- 1. There is a ground truth we can rely on
 - We know what similar and not similar look like
 - Ideally, we can quantify it
 - Necessary

2. We can represent the data as vectors

- Optional, but saves us a lot of headache

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

Proteins:

% of protein alignment

Graph neural networks, polynomials, ...

Ok, now what?

- Approach:
 - 1. Offline phase:
 - transform the data into vectors 1
 - pre-cluster based on mutual distance 2.
 - create an index to help with navigation to the clusters 3.
 - Online phase: 2.
 - locate protein ID in the database 1.
 - predict its location with the index 2.
 - do quick (but not as accurate) pre-filtering 3.
 - 4. do slow (but accurate) post-filtering

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

- Task: Given an input protein, find k most similar proteins in 214M AlphaFold database

 \leftarrow Optimize as much you want, you have (in theory) all the time in the world

The challenge: carefully strike the balance between accuracy and speed

 \leftarrow You better be fast here

Most similar proteins to A0A1D6JW22 (showing 50 filtered out of 50)

		Global Similarity	Local Similarity				
> Organism	UniProt ID	TM-Score ^(?) ↓	RMSD (Å) ^(?)	Aligned Residues	Sequence Identity ^(?)	Superposition	
Filler	Filler						
> (1) Panicum miliaceum	A0A3L6TI92	0.9815	1.090	99.6%		म्रि Q	
> (1) Zea mays	A0A317Y945	0.9804	1.380	100%		ц Q	
> (1) Digitaria 💮 How to move in 31	D space?	١	/iew A0A3L6TI92 ir	n Molto ×		<u>면</u> Q	
> (3) Triticum						ц Q	
> (3) Triticum						ц Q	
> (2) Prunus d						ц Q	
> (3) Quercus Visibility						ъ Q	
A0A1D6JW22 (1) Davidia i						ц Q	
 A0A3L6TI92 (1) Senna to 		Color and				₽ı Q	
Transparency						H 0	
A0A1D6JW22			KG				
> (1) Eucalypti	•	Star a	2			면 오	
> (1) Salix vim		200				<u>면</u> Q	
	•						

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

Manual

-

Query: A0A1D6JW22

Name: Cytochrome P450 family 76 subfamily C

Search Time: 1.811 s

backend of an app AlphaFind running on <u>alphafind.fi.muni.cz</u>

associated publication in Nucleic Acid Research journal

bioRxiv @biorxivpreprint · Feb 18 ** AlphaFind: Discover structure similarity across the entire known proteome biorxiv.org/cgi/content/sh #bioRxiv					
bioRχiv The preprint server for biology	biorxiv.org AlphaFind: Discover structure similarity across the er AlphaFind is a web-based search engine that provides fast structure-based retrieval in the entire				
-					

Summary

- 1. Research does not have to be theoretical
- 2. Research is not reserved for professors:

AlphaFind: discover structure similarity across the proteome in AlphaFold DB 👌

David Procházka, Terézia Slanináková, Jaroslav Olha, Adrián Rošinec, Katarína Grešová, Miriama Jánošová, Jakub Cillík, Jana Porubská, Radka Svobodová, Vlastislav Dohnal,

Matej Antol 🐱

Your presenters today

Bio friends from CEITEC

Bc. student who created the entire front-end as his bachelor's thesis

PA195/PA220 ALPHAFIND PRESENTATIONS 2024

Next plans:

- search in protein complexes / RNA / DNA
- Search in ESM Atlas (700M) proteins)
- discussing the integration into big protein databases

We're looking for collaborators :)

Also, check us out *today* in Sitola (A502) at Researcher's night (Noc védců

PhD

 $\bullet \bullet \bullet$

What is it? Why should I care? How much does it cost?

16k + up to 14k + extra = ~50k net income

Involvement in projects, teaching, ...

What do we offer? muni.cz/go/students

Students Open positions Machine Learning Enthusiast

 $\bullet \bullet \bullet \bullet$ $\Box \sim \langle \rangle$

We're looking for students to help us extend AlphaFind!

Bioinformatician

Design ways to capture the similarity of protein secondary structures/complexes/channels. You'd be working with other junior and senior bioinformaticians.

I AM INTERESTED!

Flexible working hours and work from home

You choose when and how you work. We prefer long-term partnerships that have a meaningful impact.

State of the art computing

infrastructure We leverage the infrastructure of e-INFRA CZ. Engineers from the CERIT-SC center help us finetune our algorithms and

🔒 d	isa.fi.muni.cz		Ç	D		
		Thesis top	ICS MASTER			

Software engineer

Make our search pipeline effective in the cloud (Docker, Kubernetes). Integrate new features, such as file upload, search by protein name.

</>
I AM INTERESTED!

AI/ML-oriented engineer

Design new ways to represent proteins as vectors using ML embeddings.

i AM INTERESTED!

And what do we offer?

Friendly team

We pride ourselves on our friendly team atmosphere and on our collaborations with students. When needed, our group taps into a rich history of research experience in unstructured data management and similarity

Research experience

Collaborate with international researchers. Write and publish articles in scientific journals. Prepare and present research at conferences, workshops, and seminars.

Thesis Topics About Cool Stuff #1 Thesis tag: CODA research group

Machine Learning

- Indexing Complex Data With Transformers
- Continual Learning for Evolving Data
- Designing Model Architecture for Learned Indexing of Complex Data

Human Motion Data

Quantization of Auto-Encoded Human Motion Features

Algorithms

Designing Clustering Algorithm for Indexing Complex Data

Thesis Topics About Cool Stuff #2 Thesis tag: CODA research group

Curse of Dimensionality

Indexing

- Nearest Neighbor Ordering Under Dimensionality Reduction Techniques
- Graph Navigation Approaches to ANN Indexing

Bioinformatics

- Search systems for biomolecular complexes (RNA+proteins)

Understanding the Curse of Dimensionality: Implications for High-Dimensional Indexing

• Extending metadata search with actual data for large molecular dynamics repositories

Open Position Machine Learning Enthusiast

- **Develop novel machine learning and data mining approaches** to uncover patterns within large datasets.
- Collaborate with other researchers to design and implement algorithms for fast indexing of complex data such as human motion, proteins, images, etc.
- Analyze and **interpret results from experiments** using various visualization tools and statistical methods.

Get involved with the CODA Research Group muni.cz/go/coda

- 1. Collaborate on research topics
- Learned Metric Index, AlphaFind, ...
 2. Do your PhD in our group
 3. Sign up for one of our thesis topics

Still not sure?

Come ask us in person or contact us (dohnal@fi.muni.cz) and we can figure it out together!

<image>

