
Reinforcement Learning Value Iteration and Tabular Methods

Exercise Sheet 1
Due Date: October 28, 2024

Exercises

In this set of exercises, you will implement the Value Iteration algorithm and tabular
methods for solving Markov Decision Processes. Your task is to implement the algo-
rithms, evaluate them on benchmark environments, and answer questions about their
performance and properties. You may work alone or in groups of two. If you work
in a pair, include both names and UČOs in your report.

To pass the homework, you need to get at least 70 points out of 100 points.

Implementation (max. 36 points)

Complete the incomplete classes in the hw1.py file to implement algorithms from the
lecture. Submit your code as a single Python file to the file vault (odevzdávárna) called
code hw1 in the IS.

EnvironmentWrapper and Logging Note that an environment wrapper (for Frozen-
Lake and CliffWalking) is prepared for you in infrastructure/envs/tabular wrapper.py.
The wrapper provides an interface for easily getting dynamics/reward information for
both benchmarks. You should read through this interface before starting your imple-
mentation. You can also use the Logger class to log data during training to a CSV
file.

Interface You will complete the corresponding trainer class for each algorithm. A
trainer class is required to have the constructor and the train method. The train
method should train a new policy from scratch in a provided environment and return it.

The signatures of prepared methods (positional arguments, return type) should
remain unchanged for evaluation purposes, however, you are free to add your own meth-
ods, or your own training (hyper) parameters via keyword arguments. Just make sure
you provide default values for these parameters since we will only supply the positional
parameters during the evaluation.

Value Iteration

[10 points] Complete the train method of the VITrainer class in the hw1.py file. Use
methods get dynamics tensor, get reward tensor, get transition, and get reward

of the environment wrapper to implement the value iteration algorithm. Initialize the
value function V̂ with a zero vector.

You can visualize your results via the render policy method of the environment
wrapper. Compare the output with the expected result on each map, located in the
images folder. All results were generated with γ = 0.99 and steps = 500.

[5 points] Answer the following questions:

� On which of the provided environments does the algorithm produce the optimal
value function in finitely many steps? Why?
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� On which of the provided environments does the algorithm produce the optimal
policy in finitely many steps? Why?

Tabular Algorithms

[21 points] Complete the train method of trainer classes QLTrainer, SARSATrainer,
and MCTrainer to implement Q-Learning, SARSA, and Every-Visit Monte Carlo Control
algorithms, respectively.

Use methods step and reset of the environment wrapper to interact with the envi-
ronment. In QLTrainer, you can see a sketch of the training loop. Note that you can
pass an instance of the Logger class to the train method to log additional data during
training.

For all three algorithms, use the ε-greedy policy for exploration.

Evaluation (max. 64 points)

Evaluate your implementation on environment FrozenLake, LargeLake, and CliffWalking
prepared in the hw1.py file. Then answer the following question in a report submitted to
the file vault (odevzdávárna) called report hw1 in the IS.

� Train each algorithm on 100000 samples from the environment. Use the following
hyperparameters: γ = 0.99, α = 0.1, and ε = 0.1.

� Repeat the training process multiple times.

� [16 points] Plot how the average reward accumulated per episode and value esti-
mate Q̂(s0) of the initial state change over time. Use whatever plot you think is
the most informative. However, the plot should ideally display more than merely
average values [+6 points].

Compare the performance of the algorithms and answer the following questions:

� [5 points] How do you decide what number of training repetitions is sufficient to
evaluate the performance of an algorithm?

� [5 points] Do the algorithms converge to the optimal value function? If not, why?
What would happen if we decreased ε over time? Would some of the algorithms
behave differently?

� [5 points] Explain the reasons for differences in the speed of convergence between
the algorithms.

� [5 points] What advantages and drawbacks of each algorithm do you observe?

Optimize hyperparameters:

� [11 points] Try different values of ε and α. What are your findings?

Evaluate algorithms with exploring starts:

� Use method env.reset(randomize=True) to start each episode in a random state.

� [11 points] How does the performance of the algorithms change with exploring
starts? Why?
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Algorithms Overview

Value Iteration (Lecture 2)

Value Iteration is a dynamic programming algorithm used to find the optimal policy for
a Markov Decision Process (MDP). The core idea is to iteratively update the estimate V̂
of the optimal value function V (s) for each state s using the Bellman equation:

V̂k+1(s) = max
a

∑
s′

p(s′ | s, a)
[
r(s, a, s′) + γV̂k(s

′)
]
,

where p(s′ | s, a) is the transition probability, r(s, a, s′) is the reward, and γ is the discount
factor. By the policy improvement theorem, the greedy policy recovered from the value
estimates

π(s) = argmax
a

∑
s′

p(s′ | s, a)
[
r(s, a, s′) + γV̂ (s′)

]
is guaranteed to achieve at least V̂ (s) for all states s.

Every-Visit Monte Carlo Control (Lecture 3)

Every-Visit Monte Carlo Control is a model-free algorithm that estimates the action-
value function Q(s, a) by averaging the returns observed after visiting state-action pairs
in episodes. For each episode, the return Gt is calculated as:

Gt =
T−1∑
k=t

γk−trk+1,

where T is the final timestep of the episode. For every timestep t, the action-value
function is updated as:

N(st, at)← N(st, at) + 1

Q̂(st, at)← Q̂(st, at) +
1

N(st, at)

[
Gt − Q̂(st, at)

]
To ensure exploration, an ε-greedy policy is typically used to select actions during the
episode.

Q-Learning (Lecture 4)

Q-learning is a model-free, off-policy reinforcement learning algorithm that learns the
optimal action-value function Q(s, a). It maintains an estimate Q̂(s, a) of the true action-
value function, which is iteratively refined. In Q-Learning, the agent interacts with the
environment using a behavioural policy, typically an ε-greedy policy (with respect to Q̂),
which balances exploration and exploitation. The agent collects samples in the form of
(s, a, r, s′), where s is the current state, a is the action taken, r is the reward received,
and s′ is the next state. The update rule for the action-value function estimate Q̂(s, a)
is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
,
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where α is the learning rate, and γ is the discount factor. The key feature of Q-Learning is
that it updates Q̂(s, a) using the maximum future reward from the next state, allowing it
to learn the optimal policy π∗(s), even though the samples are generated from a different
(behavioural) policy.

SARSA (Lecture 4)

SARSA is a model-free, on-policy reinforcement learning algorithm that updates the
action-value function Q̂(s, a) using the agent’s own experience with the environment. The
agent follows a behavioural policy, typically ε-greedy, to interact with the environment
and generates samples in the form of (s, a, r, s′, a′), where s is the current state, a is the
action taken, r is the reward received, s′ is the next state, and a′ is the action taken in
the next state. The update rule for the action-value function Q̂(s, a) is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γQ̂(s′, a′)− Q̂(s, a)

]
In contrast to Q-Learning, SARSA updates Q̂(s, a) based on the action a′ actually taken
in the next state s′.

4


