
PA230: Reinforcement Learning

Petr Novotný

“Good and evil, reward and punishment, are the only motives
to a rational creature; these are the spur and reins whereby
all mankind are set on work and guided.”

John Locke, Some Thoughts Concerning Education (1693)
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Organizational Information



General

• Lecture: Thursdays 2-3:40p.m.

• Homework: see the interactive syllabus in IS
• mainly binary classification (accepted/not accepted)
• all your homeworks need to be marked as passed to proceed to exam
• can (but do not have to) be done in pairs (pairs can differ across the individual assignments)
• for those who passed, the teacher will receive feedback on the general quality of the

solutions for each student - can be taken into account when determining the final grade
(typically in students’ favor)

• Exam:
• oral
• each attempt counts ? (unlike the Brázdil system)
• in general, knowledge of anything mentioned on the slides can be required, unless explicitly

marked with “nex” (like the Brázdil system)
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Team

• Lecturer: Petr Novotný

• HW team:

Martin Kurečka Václav Nevyhoštěný Vít Unčovský 3/98



Communication

Official discord server:

https://discord.gg/9mxTgYhcdB

• Official communication forum of the course: falls under the university ethical guidelines.

• Use your real name for posting (you can set-up an account under your IS email if
necessary).
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Reading

• Compulsory:
• these slides,
• material explicitly prescribed by these slides (not much).

• Recommended:
• Sutton & Barto: Reinforcement Learning: An Introduction (2nd ed.), available at https:

//web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
• henceforth referenced as “S&B”

• slides by David Silver https://www.davidsilver.uk/teaching/
• CMU slides https://www.andrew.cmu.edu/course/10-703/
• more specific literature recommendations will be given for each topic later
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Reinforcement Learning:
What, Why, When, How,
& Other Questions



Types of machine learning

• unsupervised
• spot ”useful” patterns in data

• supervised
• given labeled data, predict labels on unlabeled data

• reinforcement
• agents and decision-making
• agency = “the ability to take action or to choose what action to take” (Cambridge

Dictionary)
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General RL scheme

source: Sutton&Barto, p. 48

Keywords: sequential, dynamic, subject to uncertainty
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RL: Objective and approach

• Objective: Design a decision policy (= agent behavior) which prescribes to the agent how
to act in different situations (states), typically so as to achieve some goal.

• Approach: Start with (± random) behavior and adapt it based on past experience via the
law of effect:

• actions with good/bad consequences for the agent are more/less likely to be repeated by the
agent (within the same context)
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RL in psychology (nex)

I.P. Pavlov
(1849-1936)
classical conditioning

E. Thorndike
(1874-1949)
law of effect

J.B. Watson
(1878-1958)
behaviorist manifesto

B.F. Skinner
(1904-1990)
radical behaviorism,
reinforcement,
rewards
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Learning by trying & XX dilemma

Underlying the RL approach is the idea of learning by trying:

• first, act more or less randomly (exploration)
• integral part of early human development

• continually adapt behavior according to experience and feedback from the environment
(exploitation)

• strength of feedback ≈ strength of behavior adaptation

Balancing exploration and exploitation (XX) is a recurring theme in RL.
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Incomplete history of RL in computer science I

“Learning by trying” machines and software, ad hoc approaches:

A. Turing
(1912-1954)
1948: theoretical
“pleasure & pain” system
to train computers

C. Shannon
(1916-2001)
1950: Theseus
maze-solving mouse

M. Minsky
(1927-2016)
1950s: analog neural net
machines (SNARCS)

And many more. . .
Recommended: S&B: Sec. 1.7.
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Incomplete history of RL in computer science II

Mathematical foundations of sequential decision making:

R. Bellman
(1920-1984)

R. Howard
(b. 1934)

• Formalization via Markov decision
processes (MDPs)

• value iteration
(attributed to Bellman, 1957)

• policy iteration
(attributed to Howard, 1960)
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Incomplete history of RL in computer science III

Since late 1980’s: synthesis – learning by trial in MDPs

R. Sutton A. Barto

Temporal difference learning

C. Watkins

Q-learning

. . . and many more. 13/98



Successes of RL (nex)
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Words of caution (and controversy) (nex)
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Mathematical Foundations
of Sequential Decision-Making



MDP Example

MDP with actions, rewards and transition probabilities.

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 2

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3
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Markov Decision Process

Given a set X , we denote D(X ) the set of all probability distributions over X .

Definition 1

A Markov decision process (MDP) is a tuple (S,A, p, r) where

• S is a set of states,

• A is a set of actions,

• p : S ×A→ D(S) is a probabilistic transition function,

• r : S ×A→ R is a reward function.

We will shorten p(s, a)(s ′) to p(s ′ | s, a).

The p, r can be partial functions: action a is enabled in state s if both p(s, a) and r(s, a) are
defined. We denote by A(s) the set of all actions enabled in s.
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Dynamics of MDPs

• start in some initial state s0

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .
• in each time step t, let st be the current state; then:

• agent selects action at ∈ A(st)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward
rt+1 = r(st , at)

• t is incremented and the process repeats in the same fashion forever

Thus, the agent produces a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ..

τ is produced randomly (due to p and possibly also agent choices being probabilistic): it is a
random variable and so are its components: we define random variables

• St = state at time step t

• At = action at time step t

• Rt = reward received just before entering St
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Policies

Definition 2

A history is a finite prefix of a trajectory ending in a state, i.e., an object of type

s0, a0, r1, s1, a1, r2, . . . , at−1, rt , st ∈ (S ·A · R)∗S.

we denote by last(h) the last state of a history h.

Definition 3

A policy is a function π : (S · A · R)∗S → D(A) which to each history h assigns a
probability distribution over A(last(h)).

A policy is by definition an infinite object!
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MD policies

Definition 4

A policy π is:

• memoryless if π(h) = π(h′) whenever last(h) = last(h′) (we can view memoryless
policies as objects of type π : S → D(A));

• deterministic if π(h) always assigns probability 1 to one action, and zero to all
others (we can view det. policies of objects of type π : (S ·A · R)∗S → A).

Definition 5

A policy π is MD (memoryless deterministic) if it is both memoryless and deterministic.
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Dynamics of MDPs (more precise)

Given a distribution I of initial states and a policy π

• start in some initial state s0 ∼ I

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .

• in each time step t, let ht be the history produced so far; then:
• agent selects action at ∈ A(st) according to π, i.e. at ∼ π(ht)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward
rt+1 = r(st , at), the history is extended by at , rt , st+1,

• t is incremented and the process repeats in the same fashion forever
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Probability space induced by a policy

In particular, each policy π together with a distribution I of initial states induce a probability
measure Pπ over the trajectories of the MDP.1

We denote by Eπ the associated expected value (expectation) operator.

We denote by Pπ[E | S0 = s] the probability of event E provided that the initial state is fixed
to s (and similarly for expectations).

Exercise 6

In the “study” MDP, consider an MD policy π s.t. π(start) = study and π(next) = pub.
Compute the following quantities:

• Pπ[visit pub at least twice′ | S0 = start ′′]

• Pπ[visit pub at exactly twice | S0 = start ′′]

• Eπ[R1]

• Eπ[R3]

1I is typically known from the context and hence omitted from the notation
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Memorylessness

In this course, we will almost exclusively focus on memoryless policies. Hence, from now on,
policy = memoryless policy. General policies will be referred to as history-dependent policies
should the need arise.

Why memoryless?

Intuition: Markov property of MDPs: next step depends only on the current state and on
action performed in the current step. Hence, intuitively there is no need for a policy to
remember the past so as to “play well”.

The sufficiency of memoryless policies does not extended to more general/complex
decision-making settings (not covered in this course), such as:

• partially observable MDPs

• non-stationary environments

• quantile/risk-aware MDPs, etc.
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Returns (payoffs)

Definition 7

Let γ ∈ [0, 1) be a discount factor.
For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . we define the discounted return
(or payoff) of τ to be the quantity

G (τ) = r1 + γ · r2 + γ2 · r3 + · · · γ3 · r4 =
∞∑
i=0

γ i · ri+1.

Equivalently

G =
∞∑
i=0

γ i · Ri+1.
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Returns (variants)

• Finite horizon (FH): additionally, we are given a finite decision horizon H ∈ N ∪ {∞}. The
return is that counted only up to step H:

GH =
H−1∑
i=0

γ i · Ri+1

For finite H, the discount factor can be 1. H =∞ corresponds to the original definition.

• Episodic returns: In episodic tasks, there is a distinguished set Term ⊆ S of terminal
states which is guaranteed to be reached with probability 1 under any policy. We denote
by T a random variable denoting the first point in time when we hit a terminal state. We
count rewards only up to that time:

GT =
T−1∑
i=1

γ i · Ri+1

Can be modeled under original definition by “sink” states.
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Types of returns: discussion

• We will typically omit the superscripts since the type of task considered will be known
from the context.

• We have GH → G (pointwise) as H →∞. I.e., finite-horizon returns with high enough H

approximate the standard (infinite-horizon) case.

• In real world, we typically deal with FH or episodic tasks: we cannot wait infinite time to
learn something from a trajectory. However, the infinite-horizon case can be viewed as a
neat mathematical abstraction of the FH&episodic tasks, and the classical sequential
decision-making theory is most developed for the infinite horizon case.
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Policy and state values

Definition 8

Let π be a policy and s a state. The value of π in state s is the quantity

vπ(s) = Eπ[G | S0 = s].

Exercise 9

Discuss the values of MD policies in our running example.

Definition 10

The (optimal) value of state s is the quantity

v∗(s) = sup
π

vπ(s).
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Optimality

Definition 11

Let π be a policy and ε > 0. We say that π is ε-optimal in state s if

vπ(s) ≥ v∗(s)− ε.

We say that π is optimal in s is it is 0-optimal in s, i.e. if

vπ(s) = v∗(s).

A policy is (ε-)optimal if it is (ε-)optimal in every state.
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Existence of optimal policies

Theorem 12: (Classical result, not formally proven here)

Let M be a finite MDP (i.e., the state and action sets are finite) with infinite-horizon
returns. Then there exists an optimal MD policy. Moreover, an optimal MD policy can
be computed in polynomial time.

Agent control solved? NO! “Only” works if you can actually construct the MDP model of your
environment and fit it into a computer. Otherwise, we use reinforcement learning.
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Exact Planning
with Known Model:
Value & Policy Iteration



Goal of this lecture

Algorithms that compute the optimal value vector v∗ and some optimal MD policy π∗ given a
full knowledge of an MDP M.
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Polynomial-time algorithm

MDPs can be solved by linear programming (LP)

maximize c⃗ · x⃗

subject to A · x⃗ ≤ b⃗

• LP can be solved in polynomial time by so-called interior-point algorithms.

• However, we typically use other, MDP-specific algorithms: value iteration (VI) and policy
iteration (PI). These are not polynomial-time in general, but typically faster on practical
instances.

• Moreover, most truly RL algorithms can be seen as approximate generalizations of VI or PI
(or both).
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Example: Policy evaluation

Exercise 13

Consider all four MD policies in our running “pub or study” example. Compute the values
of these policies in the initial state start.
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Policy evaluation equations

Theorem 14

For any memoryless policy π and any state s it holds:

vπ(s) =
∑

a∈A(s)

π(a|s) ·

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · vπ(s ′)

]
︸ ︷︷ ︸

def
= qπ(s,a)

.
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Bellman optimality equations

Theorem 15

The following holds for any state s:

v∗(s) = max
a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · v∗(s ′)

]
︸ ︷︷ ︸

def
= q∗(s,a)

• Note: the policy evaluation equations are a special case of the Bellman ones: given a
policy π, we can consider an MDP Mπ in which there is a single action ∗ enabled in each
state and the probability of transition s

∗→ s ′ equals
∑

a∈A(s) π(a|s) · p(s ′|s, a). Then Mπ

mimics the behavior of π in M and Bellman eq’s in Mπ = evaluation equations for π in
M.

• But these equations are no longer linear! How do we solve them? Is the solution even
unique?
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Bellman update operator

The right-hand-side (RHS) of the Bellman equations can be viewed as an operator
Φ: RS → RS : for any x⃗ ∈ RS , Φ(x⃗) is a vector such that for any state s:

Φ(x⃗)(s)
def
= max

a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · x⃗(s ′)

]

Exercise 16

In our running example, compute Φ(⃗0).

Theorem 15 says that the optimal value vector v∗ is a fixed point of Φ:

v∗ = Φ(v∗).
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Mathematical hammers for Bellman

Lemma 17: (not proven here)

For any discount factor γ ∈ [0, 1), the Bellman operator Φ is a contraction, i.e. for any
pair of vectors x⃗ , y⃗ it holds

∥x⃗ − y⃗∥∞ ≤ γ · ∥Φ(x⃗)− Φ(y⃗)∥∞.

Theorem 18: Banach fixed point theorem (classical calculus, not proven here)

A contraction mapping from a complete metric space (in particular, Rn) to itself has a
unique fixed point.
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Exact characterization of v ∗

Corollary 19

The optimal value vector is a unique solution of the Bellman optimality equations.

In particular, also the policy evaluation equations have a unique solution, equal to vπ. Since the
policy evaluation equations are linear, their solution can be computed by Gaussian elimination.

But the general Bellman equations are not linear. How can ve solve them?
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Banach fixpoint theorem (full)

Theorem 20: Banach fixed point theorem (full version, not proven here)

A contraction mapping Φ from a complete metric space (in particular, Rn) to itself has
a unique fixed point z⃗ .

Moreover, z⃗ is the limit of iterative applications of Φ on any initial vector. I.e., for any
x⃗0 ∈ Rn, the sequence x⃗0,Φ(x⃗0),Φ(Φ(x⃗0)),Φ

(3)(x⃗0), . . . converges to z⃗ :

z = lim
i→∞

Φ(i)(x⃗0)
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Value iteration (VI; Bellman, 1957)

Algorithm 1: Value iteration
Input: MDP M = (S,A, p, r)

Output: Approximation ṽ of v∗

x ← any vector from R|S| ; // typically 0⃗
next ← x ;
repeat

foreach s ∈ S do
next(s)← max

a∈A(s)
[r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · x⃗(s ′)]︸ ︷︷ ︸
Φ(x)(s)

;

x ← next
until termination condition;

Typical term. conditions:

• after a fixed no. of iterations (i.e., use for-loop with a fixed bound)
• after each component of x changes less then some given ε 39/98



How to use VI

By the Banach fixpoint theorem (and Lemma 17), the value of variable x VI converges to v∗.
Can we recognize when is x “close enough” to x⃗?

In the following couple of theorems, let x⃗0, x⃗1, x⃗2, . . . be the sequence of vectors computed by
VI, i.e. x⃗0 is arbitrary and x⃗i+1 = Φ(x⃗i ) for all i ≥ 0.

Theorem 21: Stopping condition (not proven here)

For any ε > 0: if

∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1− γ

γ
,

then
∥x⃗i+1 − v∗∥∞ ≤ ε
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How to use VI (2)

How fast can we get to the point where we are close enough?

Theorem 22: Speed of convergence (not proven here)

For all i ≥ 0 it holds

∥x⃗n − v∗∥∞ ≤
γn

1− γ
· ∥x⃗1 − x⃗0∥∞.

In particular, if we terminate VI after

i =


log(ε) + log

(
1−γ

∥x⃗1−x⃗0∥∞

)
log(γ)


steps, then its output xi will be an ε-approximation of v∗.
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How to use VI (3)

Can we actually get some optimal values instead of approximations?

First, note that VI
computes optimal finite-horizon values:

Let v i = supπ Eπ[
∑H

i=1 γ
i−1 · Ri ]. The supremum is over all (i.e., history dependent) policies,

since in the FH problem an optimal policy needs to track the number of elapsed (and thus
remaining) steps: memory is needed for that.

Theorem 23: (Easy but important exercise)

If x⃗0 = 0⃗, then x⃗H = vH for all H ≥ 0.
Moreover, let πH be a deterministic history-dependent policy such that for all 1 ≤ i ≤ H,
whenever there are i steps remaining till the horizon, the policy πH selects in state s an
action a s.t.

a = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗i−1(s
′)]

(with ties broken arbitrarily). Then πH is an optimal H-step policy.
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Greedy policies

Can we actually get optimal policy for the inf. horizon problem?

Definition 24: x⃗-greedy policy (very important)

Let x⃗ ∈ RS be any vector. A x⃗-greedy policy is an MD policy π such that in any state s:

π(s) = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗(s ′)].
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How to use VI (4)

Theorem 25: Optimal inf.-horizon policy from VI (not proven here)

There is a number N polynomial in size of the MDP and exponential in the binary
encoding size of γ such that a policy π that is x⃗N -greedy is optimal in every state, i.e.
vπ = v∗.

Note that once π is computed, vπ can be computed in polynomial time via policy evaluation
equations.

Hence, VI can be said to solve MDPs in exponential time (and in polynomial time if the
discount factor is assumed to be a fixed constant instead of an input parameter), though the
approximate version is typically used in practice.

Note: the fact that some policy π is x⃗-greedy does not mean that vπ ≥ x⃗! Homework: find a
counterexample and post it to Discord.

However, for VI it can be shown that if ∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1−γ
γ (stopping condition from

Theorem 21), then an x⃗i+1-greedy policy is ε-optimal. 44/98



Policy improvement

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 2

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3

vπ = ( )

let π′ be vπ-greedy
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Policy improvement theorem

Theorem 26: Policy improvement

Let π be a policy. If Φ(vπ) ≥ vπ, then any vπ-greedy policy πg is at least as good as π,
i.e. ∀s ∈ S : vπg (s) ≥ vπ(s).
Moreover, if Φ(vπ)(s) > vπ(s) for some state s, then also vπg (s ′) > vπ(s ′) for some
state s ′.
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Returns from a given time step

For the proof of PIT and also many times later, we will need the following notation:

Definition 27: Important!

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t ∈ N a time step. We
define

Gt(τ) =
H−1∑
i=t

γ i−t · ri+1 = rt+1 + γrt+2 + γ2rt+3 + · · · ,

where H ∈ N ∪ {∞} or H = T for episodic tasks.
We similarly define, for any policy π:

Gπ
t = Eπ[Gt ] = Eπ[

H−1∑
i=t

γ i−t · Ri+1].
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Proof of PIT (setup)

We will define a sequence of policies π0, π1, π2, . . . s.t.:

• π0 = π

• πi behaves as πg (i.e., selects the same actions in same states) for the first i steps, then
“switches” back to behave as π:

• we also define π∞ = πg

We want: vπ∞(s) ≥ vπ(s) for all s.

Not hard to see: vπi → vπ∞ as i →∞ (πi behaves as π∞ for longer and longer as i increases
+ discounting).
It suffices to show: vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S.
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Proof of PIT (induction)

vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S

• i = 0: clear

• i > 0:

vπi (s) = Eπi [R1 + γR2 + · · ·+ γ i−1Ri + γ iRi+1 + · · · | S0 = s]

= Eπi [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]

= Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]︸ ︷︷ ︸
Suppose we prove ≥Eπi−1 [γ i−1Ri+γ iRi+1···|S0=s]

≥ Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 + γ i−1Ri + γ iRi+1 · · · | S0 = s]

IH
≥ vπ(s)
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≥ vπ(s)
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Proof of PIT (induction, behavior at “reset”)
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= γ i−1 · Eπi [Ri + γRi+1 · · · | S0 = s]

= γ i−1 ·
∑
s′∈S

Pπi [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πi (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πi (s
′)) · Eπi [Gi | Si = s ′′]

)
= γ i−1 ·

∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]︸ ︷︷ ︸

vπ(s′′)

)
︸ ︷︷ ︸

=Φ(vπ)(s′), since πg is vπ-greedy︸ ︷︷ ︸
≥vπ(s′), since Φ(vπ)≥vπ by PIT assumption.

≥ γ i−1 ·
∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] · vπ(s ′) = γ i−1 · Eπg [Gi−1 | S0 = s] = Eπg [γ i−1Gi−1 | S0 = s]

= Eπg [γ i−1Ri + γ iRi+1 · · · | S0 = s] = Eπi−1 [γ i−1Ri + γ iRi+1 · · · | S0 = s] Strictness?
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)
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Policy iteration (PI; Howard, 1960)

Algorithm 2: Policy iteration
Input: MDP M = (S,A, p, r)

Output: Optimal MD policy π∗ for M, its value vector v∗

π ← arbitrary MD policy ;
v ← vπ ; // e.g. by solving linear policy evaluation equations
while Φ(v) ̸= v do

foreach s ∈ S do
π(s)← argmaxa∈A(s)[r(s, a) + γ ·

∑
s′∈S p(s ′|s, a) · v(s ′)]

v ← vπ

return π, v
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PI correctness & complexity

Theorem 28

Policy iteration terminates after at most exponentially many iterations. Upon termina-
tion, it returns an optimal MD policy.

Proof:

• Optimal upon termination: vπ is a fixpoint of Φ when terminating: optimality follows
from Corollary 19.

• Terminates: π always stores an MD policy and there are finitely many of these. We will
show that no single MD policy appears in more than one iteration of PI.
Consider any iteration and let v , v ′ be the contents of variable v before and after the
iteration. We will show that unless Φ(v) = v , it holds v ′ > v , i.e. v ′ ≥ v componentwise
with strict inequality in some component. Hence, v = vπ strictly increases during PI, so
no π can appear twice.
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PI: correctness proof

v ′ ≥ v :

We verify assumptions of PIT: Φ(v) ≥ v . Recall v = vπ. For all s ∈ S:

Φ(v)(s) = max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · v(s ′)]

≥ r(s, π(s)) + γ ·
∑
s′∈S

p(s ′ | s, π(s)) · vπ(s ′)

= vπ(s) = v(s).

By PIT, v ′ = vπ′ ≥ vπ = v (here π′ is the v -greedy policy).
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PI: correctness proof II

It remains to prove that v ′ > v or PI terminates. Assume that v ′ = v . Then for all s ∈ S:

v ′(s) = r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ′
(s ′)

= r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ(s ′) (assumption)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ(s ′)] (π′ is v = vπ-greedy)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ′
(s ′)] (assumption)

= Φ(v ′)(s)

,

so PI terminates at this point. Complexity?
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PI&VI: discussion

• We know that MDPs have a linear programming (LP) formulation. PI is basically a
variant of a simplex method for this LP, using a special pivoting rule.

• PI typicaly requires less iterations to converge than VI, though each iteration is more
expensive (policy eval.)

• Both PI and VI typically work well in practice for MDPs whose explicit transition table fits
inside a computer. Which of the two is faster is rather domain-specific.
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PI variants

Can we get rid of the expensive policy evaluation by linear system solving?

Yes: we can approximate the value of the current policy π by applying VI on the MDP Mπ, for
either fixed number of steps or until v does not change much. Often appearing in RL
textbooks:
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Policy iteration with approximate evaluation

π ← arbitrary MD policy; v ← arbitrary vector;
repeat

v ← Eval(π, v);
foreach s ∈ S do

π(s)← argmaxa∈A(s)[r(s, a) + γ ·
∑

s′∈S p(s ′|s, a) · v(s ′)]

until π has not changed;
return π, v

Function Eval(π, v):
v ′ ← v ;
repeat

foreach s ∈ S do
v(s)← v ′(s);
v ′(s)← r(s, π(s)) + γ ·

∑
s′∈S p(s ′ | s, π′(s)) · v(s ′)

until ∥v − v ′∥∞ ≤ ε;

return v ′ 57/98



Convergence of PI variants

• The algorithm on previous slide still converges to an optimal policy provided that ε is
small enough.

• If we replaced the “π not changed condition” with the original “Φ(v) = v ” condition, the
algorithm might not terminate, since the VI is only guaranteed to reach a true fixpoint in
the limit. However, v would still converge to v∗ and thus π would eventually become
equal to an optimal policy.

• The previous point holds even in the very degenerate case when we do just one iteration of
VI per policy evaluation! See next slide.
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Curiously looking approximate PI

v ← arbitrary vector;
π ← v -greedy MD policy ;
repeat

foreach s ∈ S do
v ′(s)← r(s, π(s)) + γ ·

∑
s′∈S p(s ′|s, π(s)) · v(s ′);

v ← v ′;
foreach s ∈ S do

π(s)← argmaxa∈A(s)[r(s, a) + γ ·
∑

s′∈S p(s ′|s, a) · v(s ′)]

until Φ(v) = v ;
return π, v

This is just VI in disguise!
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Generalized policy iteration

Evaluate

Improve

push v

towards vπ

make π

(more)
v -greedy

Source: Sutton&Barto, p. 87
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Tabular Methods
for Model-Free
Reinforcement Learning



Model-free

We will still be working with MDPs. But for a bunch of the following lectures, we will not
(necessarily) have access to, e.g.:

• a table containing explicit enumeration of all states/actions

• a table containing the description of p or r

• the ability to compute the probability vector δ(s, a) or the reward signal r(s, a) given s

and a (having this = gray-box model of the MDP)
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Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).

62/98



Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).

62/98



Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).

62/98



Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).

62/98



Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).

62/98



Sampling from a policy

Given an effective representation of a policy π, we can sample a trajectory
s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . by performing, for each t ∈ {0, . . . ,T}:

• sample at ∼ π(st)

• query the environment for st+1 ∼ p(st , at) and rt+1 = r(st , at)

• increment t

Tabular = value estimates and policies represented as tables (e.g. Q(s, a) for each state s and
action a used in s – explicit representation might only be needed for states/actions actually
encountered).
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Basic classification of (tabular) RL algorithms

Three independent axes:

problem on/off updates

policy evaluation (value prediction) on-policy Monte Carlo

vs. vs.

xy
control off-policy temporal difference
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Assumptions: successor-dependent rewards & episodic tasks

Since we do no longer have the knowledge of the transition dynamics p, we cannot freely
interchange MDPs with rewards functions of type S ×A× S → R and S ×A→ R via
the equation r(s, a) =

∑
s′∈S p(s ′ | s, a) · r(s, a, s ′).

Hence, to maintain generality (and correspondence to e.g. Gymnasium environments)
we will assume reward functions of type S ×A× S → R.

We will assume episodic returns: each trajectory terminates with probability 1 at some
(possibly random) time step T. Termination can be defined e.g. by reaching some terminal
state or by running out of some fixed decision horizon (in Gymnasium, this is sometimes
called truncation):

G =
T−1∑
i=0

γ i · Ri+1.

Episode = one high-level iteration of an RL algorithm, corresponding of sampling a single
trajectory from some policy. 65/98



Monte Carlo Methods



MC evaluation

Policy evaluation: given an effective representation of a policy π, estimate vπ (or qπ).

Naive Monte Carlo: Sample from π: if {τ1, τ2, . . . , τn} are trajectories (episodes) independently
sampled under π from the same initial state s, then 1

n

∑n
i=1 G (τi )→ vπ(s) as n→∞ due to

law of large numbers (LLN).

But this throws away a lot of valuable information! E.g. what if we want to estimate the whole
vπ?
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First-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as
follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, we identify the first occurrence of s on τ : let
this be at timestep t; we add Gt(τ) to Ret(s)

start X start next pass. sleep
2 -1 -2 -2 20

Sub-trajectory starting at the first appearance of s can be seen as a trajectory sampled from π

when s is the initial state! (Since we consider memoryless π.)

Theorem 29

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s). Moreover, the average of
Ret(s) is an unbiased estimate of vπ(s) (as long as Ret(s) ̸= ∅).
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First-visit MC (pseudocode)

Source: Sutton&Barto, p.92
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Every-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as
follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and each t such that St(τ) = s we add
Gt(τ) to Ret(s)

start X start next pass. sleep
2 -1 -2 -2 20

The sample returns added to Ret(s) within the same episode are not independent! Hence, the
estimate is biased, though the bias vanishes in the limit:

Theorem 30

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s).
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MC convergence

Optional reading: More on MC estimate bias, variance, and convergence in:

Singh, S.P. and Sutton, R.S.: Reinforcement Learning with Replacing Eligibility Traces.
In Machine Learning 22:123–158. Kluwer, 1996.
(Section 3, particularly 3.3 and onwards, you can skip Theorem 4.)
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Towards MC control

Control = computation of “good” policy for a given environment. (Ideally, the policy should get
closer to the optimal policy the more episodes we sample.)

We know (PIT): given a policy π a vπ-greedy policy is at least as good as π:

πg (s) = argmax
a∈A(s)

[ ∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′)

)]
Do we have an algo? There is an issue:
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MC control with q-values

Recall:

qπ(s, a)
def

=
∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′) .

)
Thus, the vπ-greedy policy πg can be defined as:

πg (s) = argmax
a∈A(s)

qπ(s, a)︸ ︷︷ ︸
Estimate by MC.
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MC for q-value estimation

Analogous to value estimation, e.g. first-visit:

For each s, a, we estimate qπ(s, a) as an average of sample returns Ret(s, a) which is formed
as follows:

• initially, Ret(s, a) = ∅ for all s

• we then sample trajectories until timeout:
• for each sampled trajectory τ and each state-action pair (s, a), we identify the first t such

that St(τ) = s ∧ At(τ) = a; we add Gt(τ) to Ret(s)

start X start next pass. sleep
proc.:2 study:-1 study:-2 done:-2 done:20

Similarly for every visit. Convergence guarantees the same as for state values.
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Infinite exploration and exploring starts

Issue: MC only estimates qπ(s, a) if:

• s guaranteed to be visited with positive probability in each episode

• π(a | s) > 0.

Definition 31: Infinite exploration

A RL algorithm has infinite exploration (IE) if, during the infinite execution of the algo-
rithm, each state-action pair (s, a) is visited infinitely often with probability 1.

One way of achieving IE is through exploring starts (ES): each episode begins with (typically
uniformly) randomly selected s0 and a0. This is achievable when training, e.g., in simulated
environments but might be difficult/impossible in real-world environments.
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MC control with exploring starts

Source: Sutton&Barto, p.99
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IE through ε-soft policies

Exploring starts are not always feasible. Alternative: make the sampled policy itself exploratory.

Definition 32: ε-soft policy

A policy π is ε-soft if for every s ∈ S and every a ∈ A(s) it holds π(a|s) ≥ ε
|A(s)| .

Definition 33: ε-greedy policy

Let v ∈ RS be a value vector. A policy π is v -ε-greedy if for every state s ∈ S there
is action a∗ = argmaxa∈A(s)

∑
s′∈S p(s ′ | s, a) ·

(
r(s, a, s ′) + γ · v(s ′)

)
such that for any

action a ∈ A(s) it holds:

π(a|s) =

 ε
A(s) if a ̸= a∗

1− ε+ ε
A(s) if a = a∗.

Interpretation: with prob. ε: play uniformly at random; with prob. 1− ε: play greedily.
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ε-softing

Definition 34

Let π be a policy. An ε-softing of π is a policy πε defined as follows: in each state s

• with probability ε, πε selects an action uniformly at random;

• with probability 1− ε, πε selects a ∼ π(s).

I.e., an ε-greedy policy can be alternatively defined as ε-softing of a greedy policy.
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MC control with ε-greedy policies

source: Sutton&Barto, p. 101
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Policy iteration for ε-soft policies

Theorem 35

Let π be an ε-soft policy and let π′ be a vπ-ε-greedy policy. Than vπ′ ≥ vπ (componen-
twise). Moreover, the two value vectors are equal if and only if bot π and π′ are optimal
among all ε-soft policies; i.e. if, for every state s:

vπ(s) = sup
π̄ that is ε-soft

v π̄(s).

Proof: Required reading: Sutton&Barto, p.101-103.
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Incremental computing of averages

Given a sample {n1, n2, . . . , nk+1} and average A = avg({n1, n2, . . . , nk}), how to compute
A′ = avg({n1, n2, . . . , nk , nk+1}) without recomputing the average of the whole sample?

A′ =

k

k + 1
· A+

nk+1

k + 1
.
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On-policy vs. off-policy

• On-policy algorithms: track one “policy variable” π; the policy stored in π is used to
interact with the environment (i.e., to sample episodes) and at the same time we learn
something about it (e.g. its value vector).

• Corresponds to the generalized policy iteration scheme.
• All the MC algos we have seen so far.

• Off-policy algorithms: track more (typically two) different policy variables:
• behavior policy: used to sample episodes
• target policy: which we want to learn about
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Off-policy evaluation

We are given effective representations of:

• a behavior policy β,

• a target policy π.

The task is to estimate vπ by sampling episodes from β . We cannot sample from π! (E.g. π

too risky or expensive to sample from.)

Assumptions:

• given (s, a), we can effectively compute π(a|s) and β(a|s) (or at least estimate via
sampling)

• coverage: ∀s ∈ S, a ∈ A(s): if π(a|s) > 0, then also β(a|s) > 0
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Importance sampling

Definition 36: Importance ratio

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. The importance-sampling
ratio of τ is the quantity

ρ(τ)
def
=

Pπ[τ | S0 = s0]

Pβ[τ | S0 = s0]

=
Pπ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]

Pβ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]
.
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Importance ration from time t

Definition 37

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. By τi..j we denote the sub-
trajectory of τ starting in time step i and ending in timestep j . By τi.. we denote the
suffix of si , ai , ri+1, si+1, ai+1, . . ..

Definition 38: Importance ratio from time t

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t a time step. The
importance-sampling ratio of τ from t is the quantity

ρt(τ)
def
=

Pπ[τt.. | S0 = st ]

Pβ[τt.. | S0 = st ]

=
Pπ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st ]

Pβ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st ]
.
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Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s)

.

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st)

.
85/98



Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s)

.

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st)

.
85/98



Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s)

.

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st)

.
85/98



Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s).

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st)

.
85/98



Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s).

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st).
85/98



Weighted importance sampling

First-visit variant: for each state s, we keep a set of samples Sam(s). Each sample is a tuple
(τ, t) – trajectory and time step.

• initially, Sam(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and the smallest t such that St(τ) = s we
add (τ, t) to Sam(s)

Throughout the algorithm, the value of state s is estimated as

WIS(s) =

∑
(τ,t)∈Sam(s)

ρt(τ) · Gt(τ)∑
(τ,t)∈Sam(s)

ρt(τ)

Exercise 40

Compare ordinary/weighted importance sampling after single sample.
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Weighted importance sampling – correctness

The weighted sampling is clearly a biased estimator. However, the bias vanishes in the limit:

Theorem 41

With probability 1: as |Sam(s)| → ∞, we have that WIS(s)→ vπ(s).

Proof:

87/98



Ordinary vs. weighted sampling

source: Sutton&Barto, p. 106
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Importance sampling: summary

But ordinary and weighted importance sampling can be adapted to every-visit MC.

Bias & Convergence:

• First visit:
• ordinary IS: unbiased, i.e. also converges
• weighted IS: biased, but converges in the limit

• Every visit:
• both ordinary and weighted: biased (due to EV), but converges in the limit
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Weighted IS: incremental implementation

Instead of recomputing the weighted average for each new sample, WIS(s) can be updated by
keeping keep just two variables:

• V – current value of WIS(s), initially arbitrary

• C – the sum of importance ratios, initially 0

Upon arrival of new sample (τ ′, t ′), we update V ,C into new values V ′,C ′ by setting:

C ′ = C + ρt′(τ
′)

V ′ = V +
ρt′(τ

′)

C ′ · (Gt′(τ
′)− V ) .
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Off-policy evaluation with weighted IS

source: Sutton&Barto, p.110
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Off-policy control with weighted IS

Required reading: Sutton&Barto, Section 5.7.
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Temporal Difference Methods



TD: Motivation

Let us first focus on policy evaluation. TBD

MC: zero bias (at least in the limit), but potentially high variance: many samples needed to
converge. Also, to update estimates, it must wait till the end of each episode.

TD methods retain the focus on sampling but combine it with bootstrapping.
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Incremental update notation

Definition 42: Notation for updates

In the context of RL algorithms will denote by V n(s) (resp. Qn(s, a)) the algorithm’s
estimate of vπ(s) (resp. qπ(s, a)) after n-th update of this estimate.
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MC vs. TD(0) update

On-policy MC (incremental) update using sampled trajectory τ :

V n+1(st)← (1− αn)V
n(st) + αnGt(τ) = V n(st) + αn ·

[
Gt(τ)︸ ︷︷ ︸

update target

−V n(st)

︸ ︷︷ ︸
update error

]
,

where αn = n/(n + 1).

TD(0) update in the same situation, with αn “suitably chosen” (possibly constant):

V n+1(st)← V n(st) + αn ·
[
Rt+1(τ) + γ · V n(St+1(τ))︸ ︷︷ ︸

bootstrap

−V n(st)
]
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Policy evaluation with TD(0)

source: Sutton&Barto, p. 120
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How can it even work?

Really “just” a very asynchronous, sample-based, and “α-dampened” version of value iteration.

Eπ[Gt |St = s] = Eπ[Rt+1 + γ · Gt+1 | St = s] = Eπ[Rt+1 | St = s] + γ · Eπ[Gt+1 | St = s]︸ ︷︷ ︸
vπ(St+1)

.

In expectation, the TD(0) update is the same as VI update in Mπ. Thanks to the contractivity
of the Bellman operator, VI possesses an error reduction property: after each update, the error
of the estimate decreases. Hence, in expectation, the same is true for the TD(0) update.

Formal proof of correctness in optional reading:

Sutton, R.S.: Learning to Predict by Methods of Temporal Differences. In Machine
Learning 3:9–44. Kluwer, 1988. (For MDPs with function approximation.)
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Why TD is natural (Sutton&Barto, p. 122-123)
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