
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: Formal Relational Query

Languages

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Chapter 3: Formal Relational Query Languages

Relational Algebra - Extensions

Tuple Relational Calculus

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

Relational Algebra

Procedural language

Six basic operators

select: 

project: 

union: 

set difference: –

Cartesian product: x

rename: 

The operators take one or two relations as inputs and produce a new

relation as a result.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Formal Definition

A basic expression in relational algebra consists of either one of the

following:

A relation in the database

A constant relation

Let E1 and E2 be relational algebra expressions; the following are also

relational-algebra expressions:

E1  E2

E1 – E2

E1 x E2

p (E1), P is a predicate on attributes in E1

s(E1), S is a list consisting of some of the attributes in E1

 x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but they simplify common queries.

Set intersection

Natural join

Assignment

Outer join

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Set-Intersection Operation

Notation: r  s

Defined as:

r  s = { t | t  r and t  s }

Assume:

r, s have the same arity

attributes of r and s are compatible

Note: r  s = r – (r – s)

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Set-Intersection Operation – Example

Relation r, s:

r  s

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Notation: r s

Natural-Join Operation

Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R  S obtained as follows:

Consider each pair of tuples tr from r and ts from s.

If tr and ts have the same value on each of the attributes in R  S, add

a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

Example:

R = (A, B, C, D)

S = (E, B, D)

Result schema = (A, B, C, D, E)

r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

Natural Join Example

Relations r, s:

r s

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

Natural Join and Theta Join

Find the names of all instructors in the Comp. Sci. department together with

the course titles of all the courses that the instructors teach

 name, title ( dept_name=“Comp. Sci.” (instructor teaches course))

Natural join is associative

(instructor teaches) course is equivalent to

instructor (teaches course)

Natural join is commutative

instruct teaches is equivalent to

teaches instructor

The theta join operation r  s is defined as

r  s =  (r x s)

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Assignment Operation

The assignment operation () provides a convenient way to

express complex queries.

Write query as a sequential program consisting of

 a series of assignments

 followed by an expression whose value is displayed as a

result of the query.

Assignment must always be made to a temporary relation

variable.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

Outer Join

An extension of the join operation that avoids loss of information.

Computes the join and then adds tuples from one relation that does not

match tuples in the other relation to the result of the join.

Uses null values:

Null signifies that the value is unknown or does not exist

All comparisons involving null are (roughly speaking) false by

definition.

 We shall study the precise meaning of comparisons with nulls

later

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 6th Edition

Outer Join – Example

Relation instructor1

Relation teaches1

ID course_id

10101

12121

76766

CS-101

FIN-201

BIO-101

Comp. Sci.

Finance

Music

ID dept_name

10101

12121

15151

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

Left Outer Join

instructor teaches

Outer Join – Example

Join

instructor teaches

ID dept_name

10101

12121

Comp. Sci.

Finance

course_id

CS-101

FIN-201

name

Srinivasan

Wu

ID dept_name

10101

12121

15151

Comp. Sci.

Finance

Music

course_id

CS-101

FIN-201

null

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

Outer Join – Example

Full Outer Join

instructor teaches

Right Outer Join

instructor teaches

ID dept_name

10101

12121

76766

Comp. Sci.

Finance

null

course_id

CS-101

FIN-201

BIO-101

name

Srinivasan

Wu

null

ID dept_name

10101

12121

15151

76766

Comp. Sci.

Finance

Music

null

course_id

CS-101

FIN-201

null

BIO-101

name

Srinivasan

Wu

Mozart

null

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 6th Edition

Outer Join using Joins

Outer join can be expressed using basic operations

e.g. r s can be written as

(r s) U (r – ∏R(r s)) x {(null, …, null)}

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

Null Values

It is possible for tuples to have a null value, denoted by null, for some

of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null.

Aggregate functions simply ignore null values

For duplicate elimination and grouping, null is treated like any other

value, and two nulls are assumed to be the same

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 6th Edition

Null Values

Comparisons with null values return the special truth value: unknown

If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5

Three-valued logic using the truth value unknown:

OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

NOT: (not unknown) = unknown

In SQL “P is unknown” evaluates to true if predicate P evaluates to

unknown

Result of a select predicate is treated as false if it evaluates to

unknown

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

Division Operator

Given relations r(R) and s(S), such that S  R, r  s is the largest

relation t(R-S) such that

t x s  r

E.g. let r(ID, course_id) = ID, course_id (takes) and

s(course_id) = course_id (dept_name=“Biology”(course)

then r  s gives us students who have taken all courses in the Biology

department

Can write r  s as

temp1  R-S (r)

temp2  R-S ((temp1 x s) – R-S,S (r))

result = temp1 – temp2

The result to the right of the  is assigned to the relation variable on

the left of the .

If u = r x s than u  r = s division can be seen as invers of cart. prod.

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Extended Relational-Algebra-Operations

Generalized Projection

Aggregate Functions

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Generalized Projection

Extends the projection operation by allowing arithmetic functions to be

used in the projection list.

E is any relational-algebra expression

Each of F1, F2, …, Fn is an arithmetic expression involving constants and

attributes in the schema of E.

Given relation instructor(ID, name, dept_name, salary) where salary is

annual salary, get the same information but with monthly salary

ID, name, dept_name, salary/12 (instructor)

)(,...,,
21

E
nFFF

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a single

value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate operation in relational algebra

E is any relational-algebra expression

G1, G2 …, Gn is a list of attributes on which to group (can be empty)

Each Fi is an aggregate function

Each Ai is an attribute name

Note: Some books/articles use  instead of (Calligraphic G)

)()(,,(),(,,, 221121
E

nnn AFAFAFGGG 

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Aggregate Operation – Example

Relation r:

A B

















C

7

7

3

10

sum(c) (r)
sum(c)

27

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

Aggregate Operation – Example

Find the average salary in each department

dept_name avg(salary) (instructor)

avg_salary

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

Result of aggregation does not have a name

Can use rename operation to give it a name

For convenience, we permit renaming as part of the aggregate

operation

dept_name avg(salary) as avg_sal (instructor)

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Modification of the Database

The content of the database may be modified using the following

operations:

Deletion

Insertion

Updating

All these operations can be expressed using the assignment

operator

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Deletion

A delete request is expressed similarly to a query, except instead

of displaying tuples to the user, the selected tuples are removed

from the database.

Can delete only whole tuples; cannot delete values on only

particular attributes

A deletion is expressed in relational algebra by:

r  r – E

where r is a relation and E is a relational algebra query.

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Deletion Examples

Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1   branch_city = “Needham” (account branch)

r2   account_number, branch_name, balance (r1)

r3   customer_name, account_number (r2 depositor)

account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan –  amount  0 and amount  50 (loan)

account  account –  branch_name = “Perryridge” (account)

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Insertion

To insert data into a relation, we either:

specify a tuple to be inserted

write a query whose result is a set of tuples to be inserted

in relational algebra, an insertion is expressed by:

r  r  E

where r is a relation and E is a relational algebra expression.

The insertion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Insertion Examples

Insert information in the database specifying that Smith has $1200 in

account A-973 at the Perryridge branch.

Provide as a gift for all loan customers in the Perryridge

branch, a $200 savings account. Let the loan number serve

as the account number for the new savings account.

account  account  {(“A-973”, “Perryridge”, 1200)}

depositor  depositor  {(“Smith”, “A-973”)}

r1  (branch_name = “Perryridge” (borrower loan))

account  account  loan_number, branch_name, 200 (r1)

depositor  depositor  customer_name, loan_number (r1)

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Updating

A mechanism to change a value in a tuple without charging all values in

the tuple

Use the generalized projection operator to do this task

Each Fi is either

the I th attribute of r, if the I th attribute is not updated, or,

if the attribute is to be updated Fi is an expression, involving only

constants and the attributes of r, which gives the new value for the

attribute

)(
,,,, 21
rr

lFFF 

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

Update Examples

Make interest payments by increasing all balances by 5 percent.

Pay all accounts with balances over $10,000 6 percent interest

and pay all others 5 percent

account   account_number, branch_name, balance * 1.06 ( BAL  10000 (account))

  account_number, branch_name, balance * 1.05 (BAL  10000

(account))

account   account_number, branch_name, balance * 1.05 (account)

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Example Queries

Find the names of all customers who have a loan and an account at

bank.

customer_name (borrower)  customer_name (depositor)

Find the name of all customers who have a loan at the bank and the

loan amount

customer_name, loan_number, amount (borrower loan)

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Query 1

customer_name (branch_name = “Downtown” (depositor account)) 

customer_name (branch_name = “Uptown” (depositor account))

Query 2

customer_name, branch_name (depositor account)

 temp(branch_name) ({(“Downtown”), (“Uptown”)})

Note that Query 2 uses a constant relation.

Example Queries

Find all customers who have an account from at least the “Downtown”

and the Uptown” branches.

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Tuple Relational Calculus

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 6th Edition

Tuple Relational Calculus

A nonprocedural query language, where each query is of the form

{t | P (t) }

It is the set of all tuples t such that predicate P is true for t

t is a tuple variable, t [A] denotes the value of tuple t on attribute A

t  r denotes that tuple t is in the relation r

P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 6th Edition

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , =, , , )

3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y  x v y

5. Set of quantifiers:

  t  r (Q (t))  ”there exists” a tuple t in the relation r

such that predicate Q (t) is true

 t  r (Q (t))  Q is true “for all” tuples t in the relation r

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 6th Edition

Example Queries

Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

As in the previous query, but output only the ID attribute value

{t |  s  instructor (t [ID] = s [ID]  s [salary]  80000)}

Notice that a relation on schema (ID) is implicitly defined by

the query

{t | t  instructor  t [salary]  80000}

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 6th Edition

Example Queries

Find the names of all instructors whose department is in the Watson

building

{t | s  section (t [course_id] = s [course_id] 

s [semester] = “Fall”  s [year] = 2009

v u  section (t [course_id] = u [course_id] 

u [semester] = “Spring”  u [year] = 2010)}

Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

{t | s  instructor (t [name] = s [name]

 u  department (u [dept_name] = s[dept_name] “

 u [building] = “Watson”))}

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 6th Edition

Safety of Expressions

It is possible to write tuple calculus expressions that generate infinite

relations.

For example, { t |  t  r } results in an infinite relation if the domain of

any attribute of relation r is infinite

To guard against the problem, we restrict the set of allowable

expressions to safe expressions.

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 6th Edition

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

Domain Relational Calculus

A nonprocedural query language equivalent in power to the tuple

relational calculus

Each query is an expression of the form:

{  x1, x2, …, xn  | P (x1, x2, …, xn)}

x1, x2, …, xn represent domain variables

P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 6th Edition

Example Queries

Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

{< i, n, d, s> | < i, n, d, s>  instructor  s  80000}

As in the previous query, but output only the ID attribute value

{< i> | < i, n, d, s>  instructor  s  80000}

Find the names of all instructors whose department is in the Watson

building

{< n > |  i, d, s (< i, n, d, s >  instructor

  b, a (< d, b, a>  department  b = “Watson”))}

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Example Queries

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

s = “Fall”  y = 2009)

v  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section] 

s = “Spring”  y = 2010)}

Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

This case can also be written as

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

((s = “Fall”  y = 2009) v (s = “Spring”  y = 2010))}

Find the set of all courses taught in the Fall 2009 semester, and in

the Spring 2010 semester

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

s = “Fall”  y = 2009)

  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section] 

s = “Spring”  y = 2010)}

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 3

http://www.db-book.com/

	Snímek 1: Chapter 3: Formal Relational Query Languages
	Snímek 2: Chapter 3: Formal Relational Query Languages
	Snímek 3: Relational Algebra
	Snímek 4: Formal Definition
	Snímek 5: Additional Operations
	Snímek 6: Set-Intersection Operation
	Snímek 7: Set-Intersection Operation – Example
	Snímek 8: Natural-Join Operation
	Snímek 9: Natural Join Example
	Snímek 10: Natural Join and Theta Join
	Snímek 11: Assignment Operation
	Snímek 12: Outer Join
	Snímek 13: Outer Join – Example
	Snímek 14: Outer Join – Example
	Snímek 15: Outer Join – Example
	Snímek 16: Outer Join using Joins
	Snímek 17: Null Values
	Snímek 18: Null Values
	Snímek 19: Division Operator
	Snímek 20: Extended Relational-Algebra-Operations
	Snímek 21: Generalized Projection
	Snímek 22: Aggregate Functions and Operations
	Snímek 23: Aggregate Operation – Example
	Snímek 24: Aggregate Operation – Example
	Snímek 25: Aggregate Functions (Cont.)
	Snímek 26: Modification of the Database
	Snímek 27: Deletion
	Snímek 28: Deletion Examples
	Snímek 29: Insertion
	Snímek 30: Insertion Examples
	Snímek 31: Updating
	Snímek 32: Update Examples
	Snímek 33: Example Queries
	Snímek 34: Example Queries
	Snímek 35: Tuple Relational Calculus
	Snímek 36: Tuple Relational Calculus
	Snímek 37: Predicate Calculus Formula
	Snímek 38: Example Queries
	Snímek 39: Example Queries
	Snímek 40: Safety of Expressions
	Snímek 41: Domain Relational Calculus
	Snímek 42: Domain Relational Calculus
	Snímek 43: Example Queries
	Snímek 44: Example Queries
	Snímek 45: End of Chapter 3

