
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 3: Formal Relational Query 

Languages 

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Chapter 3:  Formal  Relational Query Languages
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Relational Algebra

Procedural language

Six basic operators

select: 

project: 

union: 

set difference: –

Cartesian product: x

rename: 

The operators take one or two relations as inputs and produce a new 

relation as a result.
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Formal Definition

A basic expression in relational algebra consists of either one of the 

following:

A relation in the database

A constant relation

Let E1 and E2 be relational algebra expressions; the following are also 

relational-algebra expressions:

E1  E2

E1 – E2

E1 x E2

p (E1), P is a predicate on attributes in E1

s(E1), S is a list consisting of some of the attributes in E1

 x (E1), x is the new name for the result of E1
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Additional Operations

We define additional operations that do not add any power to the

relational algebra, but they simplify common queries.

Set intersection

Natural join

Assignment

Outer join
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Set-Intersection Operation

Notation: r  s

Defined as:

r  s = { t | t  r and t  s }

Assume: 

r, s have the same arity

attributes of r and s are compatible

Note: r  s = r – (r – s)
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Set-Intersection Operation – Example

Relation r, s:

r  s
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Notation:  r s

Natural-Join Operation

Let r and s be relations on schemas R and S respectively. 

Then,  r     s  is a relation on schema R  S obtained as follows:

Consider each pair of tuples tr from r and ts from s.  

If tr and ts have the same value on each of the attributes in R  S, add 

a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

Example:

R = (A, B, C, D)

S = (E, B, D)

Result schema = (A, B, C, D, E)

r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x  s))
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Natural Join Example

Relations r, s:

r     s
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Natural Join and Theta Join

Find the names of all instructors in the Comp. Sci. department together with 

the course titles of all the courses that the instructors teach

 name, title ( dept_name=“Comp. Sci.” (instructor teaches course))

Natural join is associative

(instructor      teaches)     course is equivalent to

instructor (teaches     course)

Natural join is commutative

instruct     teaches is equivalent to

teaches     instructor

The theta join operation  r      s is defined as

r       s  =  (r  x s)
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Assignment Operation

The assignment operation () provides a convenient way to 

express complex queries. 

Write query as a sequential program consisting of

 a series of assignments 

 followed by an expression whose value is displayed as a 

result of the query.

Assignment must always be made to a temporary relation 

variable.
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Outer Join

An extension of the join operation that avoids loss of information.

Computes the join and then adds tuples from one relation that does not 

match tuples in the other relation to the result of the join. 

Uses null values:

Null signifies that the value is unknown or does not exist 

All comparisons involving null are (roughly speaking) false by 

definition.

 We shall study the precise meaning of comparisons with nulls 

later
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Outer Join – Example

Relation instructor1

Relation teaches1

ID course_id

10101

12121

76766

CS-101

FIN-201

BIO-101

Comp. Sci.

Finance

Music

ID dept_name

10101

12121

15151

name

Srinivasan

Wu

Mozart
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Left Outer Join

instructor          teaches

Outer Join – Example

Join 

instructor      teaches

ID dept_name

10101

12121

Comp. Sci.

Finance

course_id

CS-101

FIN-201

name

Srinivasan

Wu

ID dept_name

10101

12121

15151

Comp. Sci.

Finance

Music

course_id

CS-101

FIN-201

null

name

Srinivasan

Wu

Mozart
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Outer Join – Example

Full Outer Join

instructor         teaches

Right Outer Join

instructor        teaches

ID dept_name

10101

12121

76766

Comp. Sci.

Finance

null

course_id

CS-101

FIN-201

BIO-101

name

Srinivasan

Wu

null

ID dept_name

10101

12121

15151

76766

Comp. Sci.

Finance

Music

null

course_id

CS-101

FIN-201

null

BIO-101

name

Srinivasan

Wu

Mozart

null
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Outer Join using Joins

Outer join can be expressed using basic operations

e.g. r      s can be written as

(r      s)  U (r – ∏R(r      s)) x {(null, …, null)}
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Null Values

It is possible for tuples to have a null value, denoted by null, for some 

of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null.

Aggregate functions simply ignore null values

For duplicate elimination and grouping, null is treated like any other 

value, and two nulls are assumed to be  the same
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Null Values

Comparisons with null values return the special truth value: unknown

If false was used instead of unknown, then    not (A < 5)

would not be equivalent to               A >= 5

Three-valued logic using the truth value unknown:

OR: (unknown or true)         = true, 

(unknown or false)        = unknown

(unknown or unknown) = unknown

AND: (true and unknown) = unknown,   

(false and unknown) = false,

(unknown and unknown) = unknown

NOT:  (not unknown) = unknown

In SQL “P is unknown” evaluates to true if predicate P evaluates to

unknown

Result of a select predicate is treated as false if it evaluates to

unknown
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Division Operator

Given relations r(R) and s(S), such that S  R,  r  s is the largest 

relation t(R-S) such that 

t x s  r

E.g. let  r(ID, course_id) = ID, course_id (takes ) and

s(course_id) = course_id (dept_name=“Biology”(course ) 

then r  s gives us students who have taken all courses in the Biology 

department

Can  write r  s as 

temp1  R-S (r )

temp2  R-S ((temp1 x s ) – R-S,S (r ))

result = temp1 – temp2

The result to the right of the  is assigned to the relation variable on 

the left of the .

If u = r x s  than u  r = s division can be seen as invers of cart. prod.
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Extended Relational-Algebra-Operations

Generalized Projection

Aggregate Functions
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Generalized Projection

Extends the projection operation by allowing arithmetic functions to be 

used in the projection list.

E is any relational-algebra expression

Each of F1, F2, …, Fn is an arithmetic expression involving constants and 

attributes in the schema of E.

Given relation instructor(ID, name, dept_name, salary) where salary is 

annual salary, get the same information but with monthly salary 

ID, name, dept_name, salary/12 (instructor)

)( ,...,,
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Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a single 

value as a result.

avg:  average value

min:  minimum value

max:  maximum value

sum:  sum of values

count:  number of values

Aggregate operation in relational algebra 

E is any relational-algebra expression

G1, G2 …, Gn is a list of attributes on which to group (can be empty)

Each Fi is an aggregate function

Each Ai is an attribute name

Note: Some books/articles use  instead of      (Calligraphic G)

)(    )(,,(),(,,, 221121
E

nnn AFAFAFGGG 



©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Aggregate Operation – Example

Relation r:

A B

















C

7

7

3

10

sum(c) (r)
sum(c )

27
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Aggregate Operation – Example

Find the average salary in each department

dept_name avg(salary) (instructor)

avg_salary
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Aggregate Functions (Cont.)

Result of aggregation does not have a name

Can use rename operation to give it a name

For convenience, we permit renaming as part of the aggregate 

operation

dept_name avg(salary) as avg_sal (instructor)
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Modification of the Database

The content of the database may be modified using the following 

operations:

Deletion

Insertion

Updating

All these operations can be expressed using the assignment 

operator
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Deletion

A delete request is expressed similarly to a query, except instead 

of displaying tuples to the user, the selected tuples are removed 

from the database.

Can delete only whole tuples; cannot delete values on only 

particular attributes

A deletion is expressed in relational algebra by:

r  r – E

where r is a relation and E is a relational algebra query.
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Deletion Examples

Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1   branch_city = “Needham” (account      branch )

r2   account_number, branch_name, balance (r1)

r3   customer_name, account_number (r2 depositor)

account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan –  amount  0 and amount  50 (loan)

account  account –  branch_name = “Perryridge” (account )
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Insertion

To insert data into a relation, we either:

specify a tuple to be inserted

write a query whose result is a set of tuples to be inserted

in relational algebra, an insertion is expressed by:

r  r  E

where r is a relation and E is a relational algebra expression.

The insertion of a single tuple is expressed by letting E be a constant 

relation containing one tuple. 
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Insertion Examples

Insert information in the database specifying that Smith has $1200 in 

account A-973 at the Perryridge branch.

Provide as a gift for all loan customers in the Perryridge

branch, a $200 savings account.  Let the loan number serve

as the account number for the new savings account.

account  account  {(“A-973”, “Perryridge”, 1200)}

depositor  depositor  {(“Smith”, “A-973”)}

r1  (branch_name = “Perryridge” (borrower    loan))

account  account  loan_number, branch_name, 200 (r1)

depositor  depositor  customer_name, loan_number (r1)
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Updating

A mechanism to change a value in a tuple without charging all values in 

the tuple

Use the generalized projection operator to do this task

Each Fi is either 

the I th attribute of r, if the I th attribute is not updated, or,

if the attribute is to be updated Fi is an expression, involving only 

constants and the attributes of r, which gives the new value for the 

attribute

)(
,,,, 21
rr

lFFF 
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Update Examples

Make interest payments by increasing all balances by 5 percent.

Pay all accounts with balances over $10,000 6 percent interest 

and pay all others 5 percent 

account   account_number, branch_name, balance * 1.06 ( BAL  10000 (account ))

  account_number, branch_name, balance * 1.05 (BAL  10000 

(account))

account   account_number, branch_name, balance * 1.05 (account)
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Example Queries

Find the names of all customers who have a loan and an account at 

bank.

customer_name (borrower)  customer_name (depositor)

Find the name of all customers who have a loan at the bank and the 

loan amount

customer_name, loan_number, amount (borrower     loan)
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Query 1

customer_name (branch_name = “Downtown” (depositor account )) 

customer_name (branch_name = “Uptown” (depositor account))

Query 2

customer_name, branch_name (depositor account)

 temp(branch_name) ({(“Downtown” ), (“Uptown” )})

Note that Query 2 uses a constant relation.

Example Queries

Find all customers who have an account from at least the “Downtown” 

and the Uptown” branches.



©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Tuple Relational Calculus
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Tuple Relational Calculus

A nonprocedural query language, where each query is of the form

{t | P (t ) }

It is the set of all tuples t such that predicate P is true for t

t is a tuple variable, t [A ] denotes the value of tuple t on attribute A

t  r denotes that tuple t is in the relation r

P is a formula similar to that of the predicate calculus
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Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., , , =, , , )

3. Set of connectives:  and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y  x v y

5. Set of quantifiers:

  t  r (Q (t ))  ”there exists” a tuple t in the relation r

such that predicate Q (t ) is true

 t  r (Q (t ))  Q is true “for all” tuples t in the relation r
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Example Queries

Find the ID, name, dept_name, salary  for instructors whose salary is 

greater than $80,000

As in the previous query, but output only the ID attribute value

{t |  s  instructor (t [ID ] = s [ID ]  s [salary ]  80000)}

Notice that a relation on schema (ID) is implicitly defined by             

the query

{t | t  instructor  t [salary ]  80000}
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Example Queries

Find the names of all instructors whose department is in the Watson 

building

{t | s  section (t [course_id ] = s [course_id ] 

s [semester] = “Fall”  s [year] = 2009

v u  section (t  [course_id ] = u [course_id ] 

u [semester] = “Spring”  u [year] = 2010)}

Find the set of all courses taught in the Fall 2009 semester, or in 

the Spring 2010 semester, or both

{t | s  instructor (t [name ] = s [name ] 

 u  department (u [dept_name ] = s[dept_name] “

 u [building] = “Watson” ))}
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Safety of Expressions

It is possible to write tuple calculus expressions that generate infinite 

relations.

For example, { t |  t  r } results in an infinite relation if the domain of 

any attribute of relation r is infinite

To guard against the problem, we restrict the set of allowable 

expressions to safe expressions.
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Domain Relational Calculus
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Domain Relational Calculus

A nonprocedural query language equivalent in power to the tuple 

relational calculus

Each query is an expression of the form:

{  x1, x2, …, xn  | P (x1, x2, …, xn)}

x1, x2, …, xn represent domain variables

P represents a formula similar to that of the predicate calculus
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Example Queries

Find the ID, name, dept_name, salary  for instructors whose salary is 

greater than $80,000

{< i, n, d, s> | < i, n, d, s>  instructor  s  80000}

As in the previous query, but output only the ID attribute value

{< i> | < i, n, d, s>  instructor  s  80000}

Find the names of all instructors whose department is in the Watson 

building

{< n > |  i, d, s (< i, n, d, s >  instructor 

  b, a (< d, b, a>  department   b = “Watson” ))}



©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Example Queries

{<c> |  a, s, y, b, r, t  ( <c, a, s, y, b, r, t >  section  

s = “Fall”  y = 2009 )

v  a, s, y, b, r, t ( <c, a, s, y, b, r, t >  section ] 

s = “Spring”  y = 2010)}

Find the set of all courses taught in the Fall 2009 semester, or in 

the Spring 2010 semester, or both

This case can also be written as

{<c> |  a, s, y, b, r, t  ( <c, a, s, y, b, r, t >  section  

( (s = “Fall”  y = 2009 )  v (s = “Spring”  y = 2010))}

Find the set of all courses taught in the Fall 2009 semester, and in 

the Spring 2010 semester

{<c> |  a, s, y, b, r, t  ( <c, a, s, y, b, r, t >  section  

s = “Fall”  y = 2009 )

  a, s, y, b, r, t ( <c, a, s, y, b, r, t >  section ] 

s = “Spring”  y = 2010)}
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