Crypto libraries
Introduction

Milan Broz
xbroz@fi.muni.cz

PV181, FI MUNI, Brno




Open source
cryptographic libraries

® Linux environment (with OpenSSL3) — up to you:
® ssh to aisa.fi.muni.cz
® Debian / VirtualBox VM (see course materials)

® Your own distro — need to install development env.:
* libgcrypt: Fedora: libgcrypt-devel; Debian/Ubuntu: libgcrypt20-dev

* OpenSSL:Fedora: openssl-devel; Debian/Ubuntu: libssl-dev

* Jibsodium:Fedora: libsodium-devel: Debian/Ubuntu: libsodium-dev

® All examples in C language
® We will use only free open-source tools and libraries

® 2x Home assignments (10 points each)



Lab environment, git and

VirtualBox image (optional)
® Optional VM Install
— Unpack zip archive from IS

— Open VirtualBox (click blue icon — config file)

— Login and password is pv181
(same for sudo and root password)

— In pcl81 home is a script to clone examples

® Examples on gitlab (always git pull for updates)
git clone https://gitlab.fi.muni.cz/xbroz/pv18l.git

make clean; make; ./example

® Check that you can compile and run examples
1_rng gcrypt, 1_rng openssl, 1 _rng sodium


https://gitlab.fi.muni.cz/xbroz/pv181.git

Cryptographic libraries
Goals for this lab

Crypto libraries and API / abstraction

More practical and implementation view

Why legacy code, compatibility and standards

Coding practices — in C language

Defensive approach: It will fail, be prepared for it :-)

Why not use a modern language with garbage collection and functional
programming and free massages after lunch?

Here’s the answer: Pointers are real. They're what the hardware understands.
Somebody has to deal with them.

You can'’t just place a LISP book on top of an x86 chip and hope that the
hardware learns about lambda calculus by osmosis.

- James Mickens, https.//www.usenix.org/system/files/1311_05-08 mickens.pdf



Why implementation matters

® It works, but ...
® How many possible bugs do you see?

#include
#include
#include

int main(int argc, char *argv([])
{

int £d;

char key[32];

fd = open("/dev/random", O_RDONLY) ;
read (fd, key, 32);
close (£fd);

memset (key, 0, 32);
return 0O;




Why implementation matters

® How many possible bugs do you see?

No check for return code, open(), read()
Posible reading from invalid fd (no random at all)
Partial read() is not detected

Failed read() is not detected
(mandatory access control can block reading)

Magic numbers (one constant on several places)

Compiler can optimize memset() out
(secret key remains in memory)

No error exit code, cannot check for failure



Why implementation matters

® Fixes? Let’'s see example 0 in git.

® |t Is better to use a crypto library.
® Usually, maintainers implement it correctly :-)

int getRandornNumber()

return Y. // chosen by foir dice roll.
/I Quaranteed to be random.
$

https.//xkcd.com/221/



Secure implementation notes

® C compilers can do many checks
— Use -Wall option and do not ighore warnings

— non-default warnings options
® User opensource static and dynamic code analyzers

— clang scan-build

— gcc -fanalyzer options
— valgrind

— cppcheck

® Fuzzing can be very powerfull
® Code review (it requires some skills)




Practically oriented books

® Jean-Phillipe Aumasson Serious
- Cryptography

Serious Cryptography:
A Practical Introduction
to Modern Encryption (2017)

® Ferguson, Schneier, Kohno CRYPTOGRAPHY

Cryptography Engineering: ~_ ENGINEERING

Principles

Design Principles and Practical s
Applications (2010)

Real-World

® David Wong (rypto
Real-World Cryptography (2021)




Cryptographic libraries
Introduction

® Open-source / Proprietary

® Static + embedded / dynamically linked

® Low or high level abstractions

® Multiplatform

¢ Stable APl and ABI

® Policy (approved algorithms)

® Security or platform specific features
Safe memory use, side-channel resistance, ...
HW acceleration support, “secure” HW support



Crypto libraries - algorithms

® Random Number Generator (RNG) access
® Hash, keyed-hash (HMAC, msg authentication)
® Symmetric ciphers and modes
® Asymmetric ciphers
® Certificate support, ASN.1, ...
® Key exchange, key derivation
® Helpers
secure memory
safe comparison
network / sockets
plugin support (like OpenSSL3 providers)



Example libs (C and Linux)
abstraction from low to high

® Nettle
® libgcrypt
® OpenSSL | OpenSSL3
® LibreSSL (clone), BoringSSL (Google)
® NSS
® Network Security Services (Mozilla)
® NaCl ("salt")
® more common as libsodium

Examples in gcrypt, OpenSSL /| OpenSSL3 and libsodium



