PV181 Laboratory of security

and applied cryptography

Seminar 9:
Crypto-libraries protected against hardware attacks

¥ ukasz Chmielewski C R */ CS

Email: chmiel@fi.muni.cz
Consultations: A406, 9.00-11.00 on Fridays uy!‘tgg raphy fj “f w

1 | pvisi www.fi.muni.cz/crocs

mailto:chmiel@fi.muni.cz

CR&,CS

Outline

* Recall + goal of this seminar

— Digital signatures
— RSA and a bit about ECC

 Side Channel + Fault Injection speed run

» Secured X25519 library: sca25519
— Optionally (but unlikely): Demo

« Assignment this week:
— Securing RSA execution

2 | pvisi www.fi.muni.cz/crocs

CR&,CS

Recall: Asymmetric cryptosystem

Public key of Bob

0,

Private key of Bob

mO,

Alice Bob
message Encrypted Decrypted
message original
Adapted Source: Network and message

Internetwork Security (Stallings)

3 | pvisi www.fi.muni.cz/crocs

CR&,CS

Recall: Digital signature scheme

Public key of Alice

@E, Is there a difference?

Private key of Alice

Qzr,

Bob

Alice

message Signed

message

verified

message

Source: Network and
Internetwork Security (Stallings)

4 | pvisl www.fi.muni.cz/crocs

RSA (recall)

www.fi.muni.cz/crocs

CR&,CS

RSA: reminder

1. Secretprimesp,q: n=p-q
2. Public exponent e:

ged(e, (p — 1)) = ged(e, (g — 1)) =1
3. Private exponentd: d-:-e =1mod @(n)
Encryption (public n,e): E(m)=m®modn=c
Decryption (private n,d): D(c) = c* modn =m

6 | Pvisi www.fi.muni.cz/crocs

CR&,CS

RSA-CRT + demo

« Optimization of computing a signature giving about 3 or 4-fold speed-up
* Precompute the following values:

— Find d, = d (mod p-1), computed as d, = e* (mod p-1)

— Find d, = d (mod g-1)

— Compute i, = g* (mod p)
 Computations using m, = m (mod p) and m, = m (mod q)
« Signature or encryption (forgetting about hashing):

— s, =m% (mod p) ¢ ——

— s4,=m% (mod q) L

— Garner’s method (1965) to recombine s, and s

* S=5,+q " (ig(Sp — S¢) (Mod p))

* Computations using m, =m (mod p) and m, = m (mod q)
 Open RSA.py and run it. Analyze it, what are your conclusions?

— What is the speed improvement?

7 | Pvisl www.fi.muni.cz/crocs

ECC (recall)

www.fi.muni.cz/crocs

CR&,CS

Recall: RSA vs. ECC

Use of Elliptic Curvyes in Cryptography

wictor §. Miller
it Beszaseh, B0 B 248, Yoruown HERES: Ny 10598

Expiarsiory Compuer SEAtRCs:

aalogee of B¢
s of the seyle of
tole

ABSTRACT

pic eUTVes in CTYPLORY aphy. In P ticular, W& propese an
e immune oM atiacks

and Adleman. i ds for infeasible attack, it 2ppSE

the Ditfie-Hellman® scheme oVer GE(p). & tumpum‘mmal power FrOWS,

pidly bigger:

e diseuss the ¢ of el
Diffic-Hellmant
estern, Miller,
about 20% faster than
(his disparity should get]

. equnentiation ~ scalar
multiplication -

* multiplication = points addition
* squaring = point doubling

Eliptic Curve Cryptosystems
By Neal Koblitz

Daniel Shanks o the vecasion of His el enpeth hirthdar

This paper 1% dedivaredd 100
jogs based on lliptic curves over finite fields of public key
‘he multiplicative group of 2 finite Gield These elliptic eun®
because the analog of the discrete Togarithm problem on

< togarithm problem. especially
an elliptic curve medulo p. and

hroup generated by 3 global

Abstract, We discuss and
eryplosystems which use
Cryplosystems may be more SECUTE,
effiptic curves is likely to be harder

aver GFiZ™) We discuss ihe question of primitive points an
give & theorem on nopsmoothness of the order of the cyclic sul

point

* The next few slides be ECC recall o7

www.fi.muni.cz/crocs

CR&,CS

Elliptic curve example

« Example
¢« y2=x3-3x2+5o0ver Q, and =

« How would it look over a finite field,
« for example: F,? for p = 7919 2

P

6000

5000 :;t;;?-:f ‘1_;:;'4;;; vw?;‘.;;‘\.r:. ‘:.;_ -.'.:::. : .:. L

=~ e ___!ﬁ S
X ,:"2 LR ;

4000

Can you see a pattern?

3000 £,

JrAe) Yo
2000 [Pt NI T
5.2

y LA

. 2Rk Saty, },‘*—-_éﬁa -
o e 3L
N E R g Rl
. A A s o TN A e M
1000 2000 3000 4000 5000 6000 7000 8000

10 | pvisi www.fi.muni.cz/crocs

1000 |3 xng

. o

CR&,CS

Elliptic curve implementations

« Group operation over the curve: addition and doubling

8000

7000

6000

5000 '-
a000
3000 £,
2000

1000

1000 2000 3000 4000 5000 6000 7000 8000

11 www.fi.muni.cz/crocs

CR&,CS

Elliptic curve implementations’ details

« Above operations on the finite field:

32.2

6000

5000

4000

5 (e
3

o e L
L
"ﬂ

3000

lr..‘
A,
B>
ol
&

O3
5""-

"

b

%

i
>

. s
L s

-32.2

2000 . -5.0

."-"t' e
R
N
il
¥
- M
[
¥

.J“' {4
ArY =t
Y
N

A
o% *
4
s
-,

1000

1000 5000 6000 7000 8000 10.01.00

www.fi.muni.cz/crocs

CR&,CS

ECC keys

« Generating key pair
— Select a random integer d from [1,n — 1]
— Compute P = [d]G = d*G;
— Hard to get d from P and G!
* Private key: d
* Public key: P,
— also: G, and curve details are also public

* For 256-bit curve
— the private key d will be approx. 256-bit long

— the public key P is a point on the curve — will be approx
512-bit long, unless compressed

14 | pvisi www.fi.muni.cz/crocs

SCA & Fli

www.fi.muni.cz/crocs

CR&,CS

Why Is hardware security important?

Card / Money Theft Identity Theft

e Premium Phone / Money Theft Impersonation

PASSPORT

16 | pvisi www.fi.muni.cz/crocs

CR&,CS

Cookies Example

Are the cookies hidden Are the cookies hidden Are the cookies hidden in
your car? NoO

- :
downstairs? No upstairs?

T T T T B
O O 0O o | O O
XX | X X

https://www.simplethread.com/great-scott-timing-attack-demo/

17 | pvisi www.fi.muni.cz/crocs

https://www.simplethread.com/great-scott-timing-attack-demo/

CR&,CS

Passive vs Active Side Channels

Passive: analyze device behavior Active: change device behavior

18 | pvisi www.fi.muni.cz/crocs

CR&,CS

Recent Practical Attacks

TPM-FAIL, November 13, 2019 Minerva, October 3, 2019

Researchers Di ssssss ECDSA
Key Re R very Method

LadderLeak, May 28, 2020

LadderLeak: Side-channel security flaws
exploited to break ECDSA cryptography

TPMScan, March 12, 2024

| PV181 www.fi.muni.cz/crocs

CR&,CS

What can be attacked & why?

* Type of device?
« What kind of primitive?
« How much control do you have?
* What can you access?
What would be the attacker’s goal?
* What is your goal?
Where Is the money?

21 | pvisi www.fi.muni.cz/crocs

CR&,CS

Some Practical Setups

DPA setup with ARM T
- CortexM4 , emp

FPGA board fr S _

T by CRE s
| SAKURA-G &
Y .Nl 2z) I " 'J) ,
SRR e ‘
: S—— ‘ TN
3 LR L
- k]

nmm.

22 | pvisl www.fi.muni.cz/crocs

CR&,CS

Simple Power Analysis (SPA) on RSA

ModExp (c) {

A=1

for (i =n-1; i>0;i— —)
A=A2modN
if (d;==1)

A=A*modN

end if

end for

Return A = cdmod N

Probe

Timing Attacks on Implementations of
(\ Diffie-Hellman, RSA, DSS, and Other Systems
\
)

N

1996.

“By carefully measuring the amount of time required to perform
private key operations, attackers may be able to find [...] RSA
keys.”

10 1000 100

10
IsMs|sMls|s|s|s sss.ss

23 | pvisi www.fi.muni.cz/crocs

CR,CS

Differential (Correlation) Power Analysis

-e,; gé, !!
b .
i [T SRRl T
{ | |v
Guess d bits target state
QA
N

f; = Selection Function(random inputs, d, target state)
HW of a register
HD between current and previous register state

* ID model (value of a register)

fi = {0 if HW < 16 fi = HW (reg_state)

1 if HW > 16

DPA = Difference of Means

2004

CPA = Pearson correlation

24 | pvisi www.fi.muni.cz/crocs

CR&,CS

Goals of Fault Injection

* The goal is to change a critical value or to change
the flow of a program.

» Faults can be injected in several ways:
— Power glitches
— Optical glitches with laser
— Clock manipulation by introducing a few very short clock cycles

— Cutting the power to the processor while performing important
computations

 Differential Fault Analysis (DFA)

26 | pvisi www.fi.muni.cz/crocs

CR&,CS

RSA-CRT: Differential Fault Analysis

Optimization of computing a signature giving about 3 or 4-fold speed-up

Precompute the following values:
— Find d, = d (mod p-1), computed as d, = e* (mod p-1)
— Find d, = d (mod g-1)
— Compute i, = g* (mod p)
Computations using m, =m (mod p) and m, = m (mod q)
Signature or encryption (forgetting about hashing):
— s, =m% (mod p) (— 8
— s4,=m% (mod q) —
— Garner’s method (1965) to recombine s, and s
* S=5,+q " (ig(Sp — S¢) (Mod p))
Due to a limited time, we need to skip the math details on how to recover
p and g, but it is possible with one fault!

— If you are interested, ask me after the seminar; it is a so-called Bellcore attack, see for
example: https://eprint.iacr.org/2012/553.pdf

29 | pvisi www.fi.muni.cz/crocs

https://eprint.iacr.org/2012/553.pdf

CR&,CS

How to protect against FI?

* You have to check that the operations was correctly
executed, for example:

— Duplication of operations;

— For signature generation you can verify the result

— Some SCA countermeasures will work even for Fl
« But not all

30 | pvisi www.fi.muni.cz/crocs

CR&,CS

Warm-up Question (1-2):
Software for PIN code verification

Input: 4-digit PIN code
Output: PIN verified or rejected
Process CheckPIN (pinf[4])

int pin_ok=0; _

if (pin[0]==5) (s
if (pin[l]==9) ¢ * Whatis the problem here?
if (pin[2]==0) ¢ * What are the execution tlrr’l)es of
if (pin[3]==2) ¢ummm the process for PIN inputs”
. « [0,1,2,3], [5,3,0,2], [5,9,0,0]
pin_ok=1; * The execution time increases as
end we get closer to
end [5,9,0,2]
end
end How would you perform a fault
return pin_ok; injection attack here?
EndProcess

31 | pvisi www.fi.muni.cz/crocs

CR&,CS

Warm-up Task — parity check for DES key

public static boolean checkParity (bytel[lkey, int offset) {
for (int 1 = 0; i < DES_KEY LEN; i++) { // for all key bytes

byte keyByte = key|[i + offset];

int count = 0;
while (keyByte != 0) { // loop till no ‘1’ bits left
if ((keyByte & 0x01) != 0) {

count++; // increment for every ‘1’ bit
}
keyByte >>>= 1; // shift right
}
if ((count & 1) == 0) { // not odd

return false; // parity not adjusted

}

return true; // all bytes were odd

32 | pvisi www.fi.muni.cz/crocs

CR®CS

Warm-up Task — parity check for DES key

cont’d

13 [*10 Key parity check

[y B = =l
t + +

Tell me what is the key ©

33 | pvisi www.fi.muni.cz/crocs

CR&,CS

Warm-up Task — parity check for DES key

cont’d
13 [*10 Key parity check
Iluuw%unMHHMMJMU}\HU u}
:*‘ J Hf r [yf’ | M, |
1010001 O0O0O01 1111011 1 L’I'IOOO'I
Ox45 O0x08 OxEF 0x23

34 | pvisi www.fi.muni.cz/crocs

CR&,CS

Question 1:
faster and more secure modexp - Montgomery ladder

Xo=X; X{=X?
for j=k-2to 0 {

ifxdi_:)? sy Both branches with the same
alse 0T number and type of operations

Xo=Xo¥*Xqj Xq=X;2 (unlike square and multiply on

X;=X; mod N : :
X=X, mod N previous slide)

}

return x,

Is it constant-time & secure? Why?

35 | pvisi www.fi.muni.cz/crocs

CR®CS

Question 2:
even maore secure modexp

Xg=Xj; X;=X2
for j=k-2to 0 {

b=d, Memory access often is not
X(l-b)=X0*2|(1I<I Xp=Xp? constant time!
X{=X; MO : :
%o=x. mod N Especially in the presence of
} caches.
return X,

Is it constant-time & secure? Why?

36 | Pvis1 www.fi.muni.cz/crocs

CR®CS

Question 3:
even maore secure modexp

Xg=Xj; X;=X2
for j=k-2to 0 {

b=d, Memory access often is not
X(l-b)=X0*2|(1I<I Xp=Xp? constant time!
X{=X; MO : :
%o=x. mod N Especially in the presence of
} caches.
return X,

Is it constant-time & secure? Why?

37 | pvisl www.fi.muni.cz/crocs

CR&,CS

Question 4:
even more more secure modexp

Xo=Xj X;=X?%; sw = 0

for j=k-2to 0 {
b=d, :
cswap(Xo, X1, bBsw) Constant-time? Depends on the
SW = swebdi cswap... but it can be ©

X1 =X ¥X) Xqg=Xp2 _
,=x, mod N Other-side channels? Depends @

Xo=Xo mod N

}

return x,

Is it constant-time & secure? Why?

38 | pvis1 www.fi.muni.cz/crocs

CR&,CS

Message and exponent blinding

c = m%mod N

1l.m,.=m.r®modN message blinding
2.d.=d+1*¢@n) exponent blinding
3. ¢, = m,% modn blinded exponentiation
4.c=c.*rmodn message “unblinding”

The sequence of operations (S, M) is related to the exponent bits.

However:
« If d is random: the sequence of exponent bits changes for every RSA execution

» If m is random: Intermediate data is random (masked) — hardly predicted!

41 | pvisl www.fi.muni.cz/crocs

CR&,CS

Message and exponent blinding

c = m%mod N

1. m,.=m.r°modN
2.d.=d+r=*¢en)
3. ¢, = m,% modn
4.c=c.*rmodn

message blinding
exponent blinding

blinded exponentiation
message “unblinding”

Message blinding is the same!
Exponent blinding needs to be done twice:

s, = m% (mod p) = m%*"®-) (mod p)
sq = m% (mod g) = m%*"@Y (mod q)

That does not stop Fl attacks!

42 | pvisi www.fi.muni.cz/crocs

CR&,CS

Why do coordinate and scalar blinding
protect ECC against SCA?

M = [s|P = [s](X,Y) = [s](x,y,1)

1.M = [s](x.z,y.z, 2) —>» coordinate blinding

2.5, =5S+r.|E]| - scalar blinding

3. M, =[s,](x.2,7y.22) —> Dblinded scalar mult.

4, > Nno unblinding

The same situation as for RSA. Point blinding is also possible but not presented above.

Note: there are of course differences in some detailed countermeasures.

43 | pvisi www.fi.muni.cz/crocs

CODE INSPECTION
PROTECTED CRYPTO LIBRARY

www.fi.muni.cz/crocs

CR&,CS

SCA&FI-protected Elliptic Curve library

* A protected library for ECDH
— key exchange & session key establishment
— It will be published in TCHES2023 volume 1 and
» presented at Ches 2023 in Prague

* Code library available from GitHub

o Useful links:
— https://eprint.iacr.orq/2021/1003
— https://qgithub.com/sca-secure-library-sca25519/sca25519

« Taking care of ECDSA.

— https://eprint.iacr.org/2022/1254
— | will add it to the repository later on.

45 | pvisl www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254

CR&,CS

What to do first

* Download (or clone) the code from:
— https://qgithub.com/sca-secure-library-sca25519/sca25519

* |f you do not know C then it will be tricky but in this
case try to be intuitive.

« Task 1: have a look at the STM32F407-unprotected:
— Please find the starting point.
— Please find the scalar multiplication function.
« And the scalar multiplication loop.
— What the code is doing?

www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519

CR&,CS

Task 1: Unprotected Crypto Library

v ~/GIT/sca25519_github/sca25519/STM32F407-unprotected/main.c (sca25519) - Sublime Text

File Edit Selection Find View Goto Tools Project Preferences Help

FOLDERS main.c
sca25519
common
figs
hostside
libopencm3
STM32F407-ephemeral
S5TM32F407-static
STM32F407-unprotected
crypto
[main.bin
/% main.c
/+ main.d
/% main.h
/+ Makefile
/+ stm32f4_wrapper.c
7+ stm32f4_wrapper.d
/* stm32wrapper.h
/* test.c
/+ test.d
/* test.h
_gitmodules
LICENSE
> README.md

[N

www.fi.muni.cz/crocs

CR&,CS

Task 1: Unprotected Crypto Library cont’d

> where we explicitly double

while (stat >= 0) {
byteNo = () (state.nextScalarBitToProcess >> 3);
bitNo = () (state.nextScalarBitToProcess & 7);
bit;
swap;

bit = 1 & (state.s.as uint8 t[byteNo] >> bitNo);

swap = bit ~ state.previousProcessedBit;
state.previousProcessedBit = bit;
(&state, swap);
(&state);
state.nextScalarBitToProcess--;

www.fi.muni.cz/crocs

CR&,CS

Protected Crypto Library — other
Implementations

Ephemeral & Static increase complexity

10 my Static Scalar Multiplication

www.fi.muni.cz/crocs

CR&,CS

Task 2: Ephemeral Crypto Library

« Have a look at the STM32F407-ephermeral (and

STM32F407-static):
— Find scalar multiplication functions and the scalar multiplication loops

* Try to find one side-channel countermeasure and one fault
Injection countermeasure. Have also a look at the list of
Implemented countermeasures in:

— https://tches.iacr.org/index.php/TCHES/issue/view/312

« Can you explain the countermeasures?

 If you have time, then try to find one or two more
countermeasures

Remark: do not worry — this is a hard exercise.

www.fi.muni.cz/crocs

https://tches.iacr.org/index.php/TCHES/issue/view/312

CR&,CS

Task 2: Ephemeral Crypto Library - Fl

(
(
(

state);

| counter);

(&state.zp))

// Optimize ck en implementing
(&st

(&state.xp, &state.xp, &state.zp); e o (&state .Kp];
(&state.xp);
(fid counter); // ### alg. step 21
(&state.xD, &state.xp); B

ﬁstate.xp.as_uints_t, 32);

Find the same countermeasure
In the static implementation.

0;

(r, &state.xp);

1 retval;

www.fi.muni.cz/crocs

CR&,CS

Task 2: Ephemeral Crypto Library - SCA

vold (
ST curve255191adderstepWorkingState *pState, wordwWithConditionBit,
bitNumber) {

randomDataBuffer[2] = {0, 0};
((JrandomDataBuffer, sizeof(randomDataBuffer));:

// Tirst combine the scalar bit with a random value which has
// the bit at the data position cleared

mask = randomDataBuffer[D] (~=(1 =< bitNumber));
wordwithConditionBit "= mask;

’/ Arrange for having the condition bit at bit #0 and random data elsewhere.
{wardW1thCond1t10nBlt bitNumber) ;

(wordwWithConditionBit, pState->xp.as uint32 t,
pState->xg.as uint32 t, randomDataBuffer[1]);
(wordwWithConditionBit, pState->zp.as uint32 t,
pState->zq.as uint32 t, randomDataBuffer[1]);

52 www.fi.muni.cz/crocs

CR&,CS

Task 2: Ephemeral Crypto Library — SCA
cont’d

vold ' WithRanaom/ ! (
ST curve25519ladderstepWorkingState *pState, wordwWwithConditionBit,
bitNumber) {
randomDataBuffer([2] {6, 0};
((*)randomDataBuffer, sizeof(randomDataBuffer));

first combine the scalar bit with a random value which has
' . (~(1 << bitNumber)):
wordwWwithConditionBit "= mask;

A e for h +he condition bhit at hit

(WérdWithCohditiohBit.'bifNumbér)}

(wordWwithConditionBit, pState->xp.as uint32 t,
pState->xq.as uint32 t, randomDataBuffer([1]);
(wordwithConditionBit, pState->zp.as uint32 t,
pState->zq.as uint32 t, randomDataBuffer([1]);

53 www.fi.muni.cz/crocs

CR&,CS

Task 3: Static Crypto Library — SCA

 Find scalar splitting (similar to blinding):
1. Generate 64-bit r and computer r1
2. Compute P’ = [r*k]*P
3. Compute [r]*P’ = [kK]P

* Does it work?

* Find this countermeasure In the static SCA code:
Steps 2 and 3.

www.fi.muni.cz/crocs

CR&,CS

Exercise: Protected Crypto Library 3

ile (state.nextScalarBitToProcess >=
limbNo = 0;
bitNo = 0O;

=f MULTIPLICATIVE CSWAP

limbNo = ()(state.nextScalarBitToProcess =)
bitNo = state.nex ox1f;

(&state, state.s.as uint32 t[limbNo],
bitNo);

{
limbNo = ()(state.nextScalarBitToProcess =)
T ITOH_COUNTERMEASURE

temp = state.s.as uint32_ t[limbNo] itoh.as uint32 t[limbNo];

(&state, &temp);
state.s.as uint32 t[limbNo] = 1;
itoh.as uint32 t[limbNo] = 1;

(&state, &state.s.as uint32_t[limbNol):

(state.nextScalarBitToProcess ==
(&state);
(fid counter);

MULTIPLICATIVE_CSWAP
ITOH_COUNTERMEASURE

(&state, uint32 t[limbNo],

bitNo); step 26

ITOH COUNTERMEASURE
(&state, &itohShift.as uint32 t[limbNo]);

55

Step 3

le (state.nextScalarBitToProcess

1imbNo
bitNo =

f MULTIPLICATIVE CSWAP

limbNo = () (state.nextScalarBitToProcess 5)
bitNo = state.nextScalarBitToProcess ox1f;

(&state, state.r.as_uint32 t[limbNo],
bitNo);

1imbNo () (state.nextScalarBitToProcess 5)
f ITOH COUNTERMEASUREG64

temp = state.r.as_uint32_t[limbNo] itoh64.as uint32 t[limbNo];
(&state, &temp);
state.r.as uint32 t[1limbNo] = 1;
itoh64.as uint32 t[limbNo] =

(&state, &state.r.as_uint32_t[limbNo]l);

f (state.nextScalarBitToProcess

(&state);
(fid_counter);

MULTIPLICATIVE CSWAP
ITOH COUNTERMEASUREG64

(&state, itoh64Shift.as uint32 t[limbNo]
bitNo); / . .

ITOH_COUNTERMEASUREG4
state, &itoh64shift.as uint32 t[limbNo]);

state.nextScalarBitToProcess

www.fi.muni.cz/crocs

Efficiency Demo (Optionally)

www.fi.muni.cz/crocs

CR&,CS

Demo Instructions

* Open in a browser: https://github.com/sca-secure-
library-sca25519/sca25519

* And follow the instructions from there
— There are some issues related to the libopencma3 library

* You need a Discover board and an FTDI cable

 Qit clone https://qgithub.com/sca-secure-library-
sca25519/sca25519.qit

www.fi.muni.cz/crocs

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519.git
https://github.com/sca-secure-library-sca25519/sca25519.git

CONCLUSIONS & QUESTIONS

www.fi.muni.cz/crocs

CR&,CS

Assignment 7 — Countermeasures

« This is a programming assignment. Please upload your
scripts/code and the required analysis via the course webpage.

« The deadline for submission is Nov. 28, 2024, 8:00.
— -3 points for each started 24h after the deadline.

* Your code should be contained in one .py file. Please name the
submission file as <uco_number>_hw?7.zip. Put there both the

python code, the analysis document, and all data produced
during analysis (as long as the size is reasonable).

* The code must contain comments so that it is reasonably easy
to understand how to run the script for evaluating each answer.

59 | pvisi www.fi.muni.cz/crocs

CR&,CS

Assignment 7 - Tasks

Have a look at the RSA _homework.py file. There are some comments for you there too.

Protect the CRT implementation with exponent blinding in the function TCR_protected! First, test and then
modify the code (the result should be the same). In a separate report (max 2 pages), write why the
countermeasure works (does not affect the correctness of the result).

Then, perform a useful analysis of the efficiency cost of the countermeasure (repeat the experiment a
number of times and report a percent increase). [2.0 points]

Protect the CRT implementation with message blinding! Note that this will require knowledge of the public
exponent e. In the document, write why the countermeasure works. Then, perform a useful analysis of the
cost of the countermeasure. [3.0 points]

Protect the CRT implementation against fault injection! Any countermeasure is OK. In the document, write
why the countermeasure works. Then, perform a useful analysis of the cost of the countermeasure. [1.5]

Combine all the countermeasures and measure the time of all additional countermeasures and how well
they work. Write that in the report. [1.5 points]

Instead of exponent blinding, implement exponent splitting. How does it compare to blinding efficiency-
wise? Order the countermeasures with respect to their efficiency. [2 point]

Bonus:

- Implement another extra countermeasure (any, it can be either SCA or FI). What is its cost? [1 point]
Remark: we are securing Python code and, for the sake of this exercise, assume that the code is directly
executed by the processor (and not interpreted etc.)

Consultation: Friday at 9:00 in A406.

Good luck!!!

60 | pvisi www.fi.muni.cz/crocs

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Outline
	Slide 3
	Slide 4: Recall: Digital signature scheme
	Slide 5: RSA (recall)
	Slide 6: RSA: reminder
	Slide 7: RSA-CRT + demo
	Slide 8: ECC (recall)
	Slide 9: Recall: RSA vs. ECC
	Slide 10: Elliptic curve example
	Slide 11: Elliptic curve implementations
	Slide 12: Elliptic curve implementations’ details
	Slide 14: ECC keys
	Slide 15: SCA & FI
	Slide 16: Why is hardware security important?
	Slide 17: Cookies Example
	Slide 18: Passive vs Active Side Channels
	Slide 19: Recent Practical Attacks
	Slide 21: What can be attacked & why?
	Slide 22: Some Practical Setups
	Slide 23: Simple Power Analysis (SPA) on RSA
	Slide 24: Differential (Correlation) Power Analysis
	Slide 26: Goals of Fault Injection
	Slide 29: RSA-CRT: Differential Fault Analysis
	Slide 30: How to protect against FI?
	Slide 31: Warm-up Question (1-2): Software for PIN code verification
	Slide 32: Warm-up Task – parity check for DES key
	Slide 33: Warm-up Task – parity check for DES key cont’d
	Slide 34: Warm-up Task – parity check for DES key cont’d
	Slide 35: Question 1: faster and more secure modexp - Montgomery ladder
	Slide 36: Question 2: even more secure modexp
	Slide 37: Question 3: even more secure modexp
	Slide 38: Question 4: even more more secure modexp
	Slide 41: Message and exponent blinding
	Slide 42: Message and exponent blinding
	Slide 43: Why do coordinate and scalar blinding protect ECC against SCA?
	Slide 44: CODE INSPECTION PROTECTED CRYPTO LIBRARY
	Slide 45: SCA&FI-protected Elliptic Curve library
	Slide 46: What to do first
	Slide 47: Task 1: Unprotected Crypto Library
	Slide 48: Task 1: Unprotected Crypto Library cont’d
	Slide 49: Protected Crypto Library – other implementations
	Slide 50: Task 2: Ephemeral Crypto Library
	Slide 51: Task 2: Ephemeral Crypto Library - FI
	Slide 52: Task 2: Ephemeral Crypto Library - SCA
	Slide 53: Task 2: Ephemeral Crypto Library – SCA cont’d
	Slide 54: Task 3: Static Crypto Library – SCA
	Slide 55: Exercise: Protected Crypto Library 3
	Slide 56: Efficiency Demo (Optionally)
	Slide 57: Demo Instructions
	Slide 58: CONCLUSIONS & QUESTIONS
	Slide 59: Assignment 7 – Countermeasures
	Slide 60: Assignment 7 - Tasks

