
CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

GPU Architecture and Programming Model
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Jǐŕı Filipovič GPU Architecture and Programming Model



CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Differences among CUDA GPUs

New generations bring higher performance and new computing
capabilities.

compute capability describes richness of GPU instruction set
and amount of resources available (registers, number of
concurrently running threads, etc.)

raw performance grows with the number of cores on a GPU

Cards in the same generation differ in performance substantially

to produce more affordable cards

to minimize power consumption of mobile GPUs
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GPUs Available Today

Currently available GPUs

compute capability 1.0 - 9.0

we will learn the differences later

1–108 multiprocessors (19GFlops - 67TFLOPs)

frequency of 800MHz–1.836GHz

width and speed of data bus (64–4096 bit, 6.4–3350GB/s)
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Generations of CUDA GPU

Generations and their computing capability

Tesla (G80, G90, G200): c.c. 1.0, 1.1, 1.2, 1.3

do not confuse with Tesla computing cards

Fermi (GF100, GF110): c.c. 2.0, 2.1

Kepler (GK100, GK110): c.c. 3.0, 3.2, 3.5, 3.7

Maxwell (GM107, GM200): c.c. 5.0, 5.2, 5.3

Pascal (GP102, GP100): c.c. 6.0, 6.1, 6.2

Volta (GV100): c.c. 7.0

Turing (GT100): c.c. 7.5

Ampere (GA100): c.c. 8.0, 8.6 (GeForce 3xxx)

Ada Lovelance (AD102): c.c. 8.9 (GeForce 4xxx)

Hopper (GH100): c.c. 9.0 (Nvidia H100)
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Available products

GeForce graphics cards

mainstream solution for gaming

cheap, widely used, broad range of performance

disadvantage – limited memory, limited double precision
performance

Professional Quadro graphics cards

larger memory

several times more expensive

Tesla/A100/H100/*

a solution specially designed for CUDA computing

offers some HW features not present in GeForce (large
memory, double/half precision, NVLink, ECC memory etc.)
speeding up some applications

expensive
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GPU Parallelism

Parallel algorithms need to be designed w.r.t. the parallelism
available in the HW

GPU: array of SIMT multiprocessors with distributed shared
memory

Decomposition for GPU

coarse-grained decomposition of the problem into the parts
that don’t need intensive communication

fine-grained decomposition similar to vectorization (but SIMT
is more flexible)
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Task Hierarchy
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SIMT

A multiprocessor of G80 has one unit executing an instruction

all 8 SPs have to execute the same instruction

new instruction is executed every 4 cycles

32 threads (so called warp) need to execute the same
instruction, warp size is fixed for all existing CUDA hardware

How about code branching?

if different parts of a warp perform different instructions, they
are serialized

decreases performance—should be avoided

The multiprocessor is thus (nearly) MIMD (Multiple-Instruction
Multiple-Thread) from programmer’s perspective and SIMT
(Single-Instruction Multiple-Thread) from performance perspective.
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GPU Architecture
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SIMT reconvergence

At the end of divergent code, a point of reconvergence is set by
the compiler

creates barrier for threads within the warp

guarantees threads synchronization after divergent code

we have to take the reconvergence points in mind – they can
create deadlocks, which do not arise in true MIMD

Volta’s and newer GPUs’ threads are scheduled independently,
thus it can be programmed as a true MIMD processor
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SIMT reconvergence

We try to serialize some region of code by the following construct:

__shared__ int s = 0 ;
while ( s != threadIdx . x ) {} ;
// s e r i a l i z e d r e g i o n
s++;

Thanks to reconvergence point, there is a deadlock (reconvergence
point is placed before the incrementation of s).
Fix:

__shared__ int s = 0 ;
while ( s < blockDim . x ) {

if ( threadIdx . x == s ) {
// s e r i a l i z e d r e g i o n
s++;

}
}
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Thread Properties

GPU threads are very lightweight compared to CPU threads.

their run time can be very short (even tens of instructions)

there should be many of them

they should not use large amount of resources

Threads are aggregated into blocks

all threads of the block always run on the same multiprocessor
(multiple blocks can run at one multiprocessor)

having sufficient number of blocks is substantial to achieve
good scalability

Number of threads and thread blocks per multiprocesor is limited.
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Memory Latency Masking

Memory has latency

global memory has high latency (hundreds of cycles)

registers and shared memory have read-after-write latency

Memory latency hiding is different from CPU

no instructions are executed out of order (but ILP can be
exploited by forcing finalization of load instruction just before
loaded data are needed)

no or limited cache

When a warp waits for data from memory, another warp may be
executed

allows memory latency hiding

requires execution of more threads than the number of GPU
cores

thread execution scheduling and switching is implemented
directly in HW without overhead
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Thread-Local Memory

Registers

the fastest memory, directly usable in instructions

local variables in a kernel and variables for intermediate results
are placed automatically into the registers

if there is sufficient number of registers
if the compiler can determine static array indexing

thread scoped

Local memory

data that doesn’t fit into the registers go into the local
memory

local memory is stored in DRAM =⇒ slow, high latency

thread scoped
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Shared Memory

Shared memory

as fast as registers for c. c. 1.x, for newer GPUs little bit
slower

if memory bank conflicts are avoided
instructions can use only one operand in shared memory
(otherwise explicit load/store is needed)

declared using shared in C for CUDA

a variable in shared memory can have dynamic size
(determined at startup), if declared as extern withou size
specification

block scoped
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Shared Memory

Static shared memory declaration

__shared__ float myArray [ 1 2 8 ] ;

Dynamic allocation

extern __shared__ char myArray [ ] ;
float *array1 = ( float *) myArray ;
int *array2 = ( int*)&array1 [ 1 2 8 ] ;
short *array3 = ( short*)&array2 [ 2 5 6 ] ;

It creates an array array1 of float type with size 128, array2 of
int type sized 256, and array3 of floating size. Total size has to
be specified at kernel startup.

myKernel<<<grid , block , n>>>();
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Global Memory

Global memory

an order of magnitude lower bandwidth compared to shared
memory

latency in order of hundreds of GPU cycles

addressing needs to be coalesced to get optimum performance

application-scoped

cached in some architectures, e.g. L1 cache (128 bytes/row)
and L2 cache (32 bytes/row) in Fermi architecture

May be dynamically allocated using cudaMalloc or statically
allocated using device declaration.
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Constant Memory

Constant memory

read-only

cached

cache hit is as fast as registry (under certain constraints),
cache miss is as fast as global memory

limited size (64 kB for GPUs currently available)

application-scoped
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Constant Memory

Declared using constant keyword; the following function is
used for copying data to constant memory:

cudaError_t cudaMemcpyToSymbol ( const char *symbol ,
const void *src , size_t count , size_t offset ,
enum cudaMemcpyKind kind )

Data are copied from system memory
(cudaMemcpyHostToDevice) or global memory
(cudaMemcpyDeviceToDevice) from src into symbol. The
copied block has count bytes. Copied with offset into the
symbol memory.
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Texture Memory

Texture memory

cached, 2D locality

read-only for cache coherency reasons

high latency

several addressing modes

normalization into [0, 1] range
truncation or overflowing of coordinates

possible data filtering

linear interpolation or nearest value

this functionality is “for free” (implemented in HW)

More details are available in CUDA Programming Guide.
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Data Cache

Read-only data cache

c.c. 3.5 or higher

the same hardware as texture cache (up to Pascal), or shared
memory (Volta and newer)

straightforward usage

compiler automatically uses data cache, when it recognize
that data are read-only

we can help with const and restrict

usage can be forced by ldg()
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System-Local Memory

System RAM

connected to GPU via PCIe

CPU (host) and GPU (device) memory transfers are
complicated by virtual addressing

it is possible to allocate so called page-locked memory areas

overall system performance may be reduced
limited size
data are transferred faster over PCIe
allows for parallel kernel run and data copying
allows for mapping of host address space onto the device
allows for write-combining access (data are not cached by
CPU)

Jǐŕı Filipovič GPU Architecture and Programming Model



CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Page Locked Memory

cudaMallocHost() is used instead of malloc() to allocate the
memory; the memory is freed using cudaFreeHost()

cudaHostAllocPortable flag ensures page-locked memory
for all CPU threads

cudaHostAllocWriteCombined flag turns off caching for
CPU allocated memory

cudaHostAllocMapped flag sets host memory mapping in the
device address space

Jǐŕı Filipovič GPU Architecture and Programming Model



CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Synchronization within the Block

Within block

native barrier synchronization

all threads have to enter it (beware of conditions!)
one instruction only, very fast if it doesn’t degrade parallelism
C for CUDA call syncthreads()
Fermi extensions: count, and, or

shared memory communication

threads can exchange data
barrier ensures that data are ready

synchronization latency hiding similar as for memory

multiple blocks on multiprocessor
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Block Synchronization

Among blocks

global memory is visible for all blocks

poor support for synchronization

no global barrier for GPUs prior Pascal architecture and CUDA
8.0
atomic operations on global memory
global barrier can be implemented using multiple kernel calls
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Matrix Multiplication

We want to multiply matrices A a B and store the result into C .
For sake of simplicity, we only assume matrices sized n × n.

Ci ,j =
∑n

k=1 Ai ,k · Bk,j

C language:

for ( int i = 0 ; i < n ; i++)
for ( int j = 0 ; j < n ; j++){

C [ i*n + j ] = 0 . 0 ;
for ( int k = 0 ; k < n ; k++)

C [ i*n + j ] += A [ i*n + k ] * B [ k*n + j ] ;
}
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Parallelization

for ( int i = 0 ; i < n ; i++)
for ( int j = 0 ; j < n ; j++){

C [ i*n + j ] = 0 . 0 ;
for ( int k = 0 ; k < n ; k++)

C [ i*n + j ] += A [ i*n + k ] * B [ k*n + j ] ;
}

Multiple ways of parallelization

choose one loop

choose two loops

parallelize all the loops

Jǐŕı Filipovič GPU Architecture and Programming Model



CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Parallelization

Parallelization of one loop

doesn’t scale well, it is necessary to use big matrices (we need
tens thousands of threads for good GPU utilization)

Parallelization of two loops

scales well, number of threads grows quadratically w.r.t. n

Parallelization using inner loop

complicated, synchronization needed when writing into C !

Best way is thus to parallelize loops over i and j .
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First Kernel

We can form the block and grid as 2D array.

__global__ void mmul ( float *A , float *B , float *C , int n ){
int x = blockIdx . x*blockDim . x + threadIdx . x ;
int y = blockIdx . y*blockDim . y + threadIdx . y ;

float tmp = 0 ;
for ( int k = 0 ; k < n ; k++)

tmp += A [ y*n+k ] * B [ k*n+x ] ;

C [ y*n + x ] = tmp ;
}

Note similarity to math description – parallel version is more
intuitive than the serial one!
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Performance

What will be the performance of our implementation?

Let’s look at GeForce GTX 280

available 622GFLOPS for matrix multiplication

memory bandwidth is 142GB/s

Flop-to-word ratio of our implementation

in one step over k, we read 2 floats (one number from A and
B) and perform two arithmetic operations

one arithmetic operation corresponds to transfer of one float

global memory offers throughput of 35.5 billion floats per
second if one warp transfers one float from one matrix and 16
floats from the other matrix, we can achieve 66.8 GFLOPS

66.8GFLOPS is very far from 622GFLOPS
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How to Improve It?

We hit the limit of global memory. GPUs have faster types of
memory, can we use them?

For computation of one C element, we have to read one row from
A and one column from B, that are in the global memory.
Is it really necessary to do that separately for each element of C?

we read the same A row for all the elements in the same row
of C

we read the same B column for all the elements in the same
column of C

we can read some data only once from the global memory into
the shared memory and then read them repeatedly from the
shared memory
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Tiled Algorithm

If we access the matrix in tiles, we can amortize transfers from the
global memory:

we will compute a× a tile of C matrix

we read tiles of the same size of matrices A and B into the
shared memory iteratively

the tiles will be multiplied and added to C

ratio of arithmetic operations to data transfers is a times
better

Natural mapping on GPU parallelism

each tile of C will be computed by a thread block

shared memory locality ensured

no inter-block synchronization needed
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Tiled Algorithm

How big thread blocks?

if equal to the tile size, it is limited by the size of shared
memory

limited by the number of threads that can run on GPU

the reasonable block size is 16× 16

multiple of warp size
one block will have reasonable 256 threads
one block needs 2KB of shared memory
the memory will not limit the performance substantially
(16 · 25.5 = 568GFLOPS, which is quite close to 622GFLOPS)
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Algorithm

Algorithm schema

each thread block have tiles As and Bs in the shared memory

tiles of A and B matrices will be multiplied iteratively, the
results will get accumulated in Csub variable

threads in a block read tiles into As and Bs cooperatively
each thread mutliplies rows in As and columns in Bs for its
element of Csub matrix

each thread stores one element of the matrix into the matrix
C in global memory

Beware of synchronization

the blocks need to be read completely before the
multiplication starts

before we read new blocks, operation on previous data needs
to be completed
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Second Kernel

__global__ void mmul ( float *A , float *B , float *C , int n ){
int bx = blockIdx . x ;
int by = blockIdx . y ;
int tx = threadIdx . x ;
int ty = threadIdx . y ;
__shared__ float As [ TILE_SIZE ] [ TILE_SIZE ] ;
__shared__ float Bs [ TILE_SIZE ] [ TILE_SIZE ] ;

float Csub = 0.0 f ;
for ( int b = 0 ; b < n/TILE_SIZE ; b++){

As [ ty ] [ tx ] = A [ ( ty + by*TILE_SIZE )* n + b*TILE_SIZE+tx ] ;
Bs [ ty ] [ tx ] = B [ ( ty + b*TILE_SIZE )* n + bx*TILE_SIZE+tx ] ;
__syncthreads ( ) ;

for ( int k = 0 ; k < TILE_SIZE ; k++)
Csub += As [ ty ] [ k ]* Bs [ k ] [ tx ] ;

__syncthreads ( ) ;
}

C [ ( ty + by*BLOCK )* n + bx*TILE_SIZE+tx ] = Csub ;
}

Jǐŕı Filipovič GPU Architecture and Programming Model



CUDA hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Performance

theoretical limitation of the first kernel is 66.8 GFLOPS,
measured performance is 36.6 GFLOPS

theoretical limitation of the second kernel is 568GFLOPS,
measured performance is 198GFLOPS

how to get closer to the maximum performance of the card?

we need to understand HW and its limitation better and
optimize the algorithms accordingly

topics for the next lectures
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