
Synchronization Memory Access Optimization

GPU Hardware Performance

Jǐŕı Filipovič

Fall 2024

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Atomic operations

performs read-modify-write operations on shared or global
memory

no interference with other threads

for 32-bit and 64-bit integers (c. c. ≥ 1.2), float addition
(c. c. ≥ 2.0), double addition (c.c. ≥ 6.0)

using global memory for c. c. ≥ 1.1 and shared memory for
c. c. ≥ 1.2

arithmetic (Add, Sub, Exch, Min, Max, Inc, Dec, CAS) a
bitwise (And, Or, Xor) operations

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Warp Voting

All threads in one warp evaluate the same condition and perform
its comparison. Available in c. c. ≥ 1.2.

int __all (int predicate) ;

Result is non-zero iff the predicate is non-zero for all the threads in
the warp.

int __any (int predicate) ;

Result is non-zero iff the predicate is non-zero for at least one
thread in the warp.

unsigned int __ballot (int predicate) ;

Contains voting bit mask of individual threads.

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Shuffle Functions

Threads within a warp can efficiently communicate using warp
shuffle functions (from c.c. ≥ 3.0).

float __shfl_sync (float var , int srcLane , int width=warpSize) ;

Copy value from srcLane.

float __shfl_up_sync (float var , unsigned int delta ,
int width=warpSize) ;

Copy value from threads with lower ID relative to caller.
Analogically shfl down.

float __shfl_xor_sync (float var , int laneMask ,
int width=warpSize) ;

Copy from a thread based on bitwise XOR of own ID and
laneMask.
Parameter width defines the number of participating threads. It
must be power of two, indexing starts at 0.

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Synchronization of Memory Operations

Compiler can optimize operations on shared/global memory
(intermediate results may be kept in registers) and can reorder
them

if we need to ensure that the data are visible for others, we
use threadfence() or threadfence block()

if a variable is declared as volatile, all load/store operations
are implemented in shared/global memory

very important if we assume implicit warp synchronization (c.c.
6.0 or lower)

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Global Synchronization using Atomic Operations

Alternative implementation of a vector reduction

each thread block sums elements in its part of a vector

barrier (weak global barrier)

one thread block sums results of all the blocks

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

__device__ unsigned int count = 0 ;
__shared__ bool isLastBlockDone ;
__global__ void sum (const float* array , unsigned int N ,

float* result) {
float partialSum = calculatePartialSum (array , N) ;
if (threadIdx . x == 0) {

result [blockIdx . x] = partialSum ;
__threadfence () ;
unsigned int value = atomicInc(&count , gridDim . x) ;
isLastBlockDone = (value == (gridDim . x = 1)) ;

}
__syncthreads () ;
if (isLastBlockDone) {

float totalSum = calculateTotalSum (result) ;
if (threadIdx . x == 0) {

result [0] = totalSum ;
count = 0 ;

}
}

}

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Global Memory Access Optimization

Performance of global memory becomes a bottleneck easily

global memory bandwdith is low relatively to arithmetic
performance of GPU (GT200 ≥ 24 FLOPS/float, GF100 ≥
30, GK110 ≥ 62, GM200 ≥ 73, GP100 ≥ 53, GV100 ≥ 67,
TU102 ≥ 76, GA100 ≥ 50, AD102 ≥ 290, GH100 ≥ 80)

400–600 cycles latency

The throughput can be significantly worse with bad parallel access
pattern

the memory has to be accessed coalesced

use of just certain subset of memory regions should be
avoided (partition camping)

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Coalesced Memory Access (C. C. < 2.0)

GPU memory needs to be accessed in larger blocks for efficiency

global memory is split into 64B segments

two of these segments are aggregated into 128B segments

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Coalesced Memory Access (C. C. < 2.0)

A half of a warp can transfer data using single transaction or one
to two transactions when transferring a 128B word

it is necessary to use large words

one memory transaction can transfer 32B, 64B, or 128B
words

GPUs with c. c. ≤ 1.2

the accessed block has to begin at an address divisible by 16×
data size
k-th thread has to access k-th block element
some threads may not participate

if these rules are not obeyed, each element is retrieved using a
separate memory transaction

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Coalesced Memory Access (C. C. < 2.0)

GPUs with c. c. ≥ 1.2 are less restrictive

each transfer is split into 32B, 64B, or 128B transactions in a
way to serve all requests with the least number of transactions

order of threads can be arbitrarily permuted w.r.t. transferred
elements

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Coalesced Memory Access (C. C. < 2.0)

Threads are aligned, element block is contiguous, order is not
permuted – coalesced access on all GPUs

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Unaligned Memory Access (C. C. < 2.0)

Threads are not aligned, contiguous elements accessed, order is
not permuted – one transaction on GPUs with c. c. ≥ 1.2

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Unaligned Memory Access (C. C. < 2.0)

Similar case may result in a need for two transactions

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Unaligned Memory Access Performance (C. C. < 2.0)

Older GPUs perform smallest possible transfer (32B) for each
element, thus reducing performance to 1/8
Newer GPUs perform (c. c. ≥ 1.2) two transfers

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Interleaved Memory Access Performance (C. C. < 2.0)

The bigger the spaces between elements, the bigger performance
drop on GPUs with c. c. ≥ 1.2 – the effect is rather dramatic

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Global Memory Access with Fermi (C. C. = 2.x)

Fermi has L1 and L2 cache

L1: 256B per row, 16 kB or 48 kB per multiprocesor in total

L2: 32B per row, 768 kB on GPU in total

What are the advantages?

more efficient programs with unpredictable data locality

more efficient when shared memory is not used from some
reason

unaligned access – no slowdown in principle

interleaved access – data needs to be used before it is flushed
from the cache, otherwise the same or bigger problem as with
c. c. < 2.0 (L1 cache may be turned of to avoid overfetching)

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Global Memory Access with ”gaming”Kepler (C. C. = 3.0)

There is only L2 cache for read/write global memory access

L2: 32B per row, up to 1.5MB per GPU

L1: for local memory, 16KB, 32KB or 48KB in total

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Global Memory Access with fully-featured Kepler and
newer (C. C. ≥ 3.5)

Read-only data cache

shared with textures

compiler tries to use, we can help with restrict and
ldg()

slower than Fermi’s L1

Maxwell and Pascal does not have L1 cache for local memory

inefficient for programs heavily using local memory

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Partition camping

relevant for c. c. 1.x (and AMD GPUs)

processors based on G80 have 6 regions, G200 have 8 regions
of global memory

the memory is split into regions in 256B chunks

even access among the regions is needed for maximum
performance

among individual blocks
block are usually run in order given by their position in the grid

if only part of regions is used, the resulting condition is called
partition camping

generally not as critical as the coalesced access

more tricky, problem size dependent, not visible from
fine-grained perspective

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

HW Organization of Shared Memory

Shared memory is organized into memory banks, which can be
accessed in parallel

c. c. 1.x 16 banks, c. c. ≥ 2.0 32 banks

memory space mapped in an interleaved way with 32 b shift or
64 b shift (c.c. 3.x)

to use full memory performance, we have to access data in
different banks

broadcast implemented – if all threads access the same data

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Bank Conflict

Bank conflict

occurs when some threads in warp/half-warp access data in
the same memory bank with several exceptions

threads access exactly the same data
threads access different half-words of 64 b word (c.c. 3.x)

when occurs, memory access gets serialized

performance drop is proportional to number of parallel
operations that the memory has to perform to serve a request

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Access without Conflicts

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

n-Way Conflicts

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Broadcast

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Access Patterns

Alignment is not needed, bank conflicts not generated

int x = s [threadIdx . x + offset] ;

Interleaving does not create conflicts if c is odd, for c .c . ≥ 3.0 no
conflict if c = 2 and 32 b numbers are accessed

int x = s [threadIdx . x * c] ;

Access to the same variable never generates conflicts on c. c. 2.x,
while on 1.x only if thread count accessing the variable is multiple
of 16

int x = s [threadIdx . x / c] ;

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Other Memory Types

Transfers between host and GPU memory

need to be minimized (often at cost of decreasing efficiency of
computation on GPU)

may be accelerated using page-locked memory

it is more efficient to transfer large blocks at once

computations and memory transfers should be overlapped

Texture memory

designed to reduce number of transfers from the global
memory

does not help if latency is the bottleneck

may simplify addressing or add filtering

Jǐŕı Filipovič GPU Hardware Performance

Synchronization Memory Access Optimization

Other Memory Types

Constant memory

as fast as registers if the same value is read by all threads
within a warp

performance decreases linearly with number of different values
read

Registers

read-after-write latency, hidden if at least 192 threads are
running for c. c. 1.x or at least 768 threads are running for
c. c. 2.x (approximation)

possible bank conflicts even in registers

compiler tries to avoid them
we can make life easier for the compiler if we set block size to
multiple of 64

Jǐŕı Filipovič GPU Hardware Performance

	Synchronization
	Synchronization

	Memory Access Optimization
	Global Memory
	Shared Memory
	Other Memory Types

