
Introduction CUDA → OCL AMD GPU Architecture

OpenCL

Jǐŕı Filipovič

Fall 2023

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

OpenCL

What is OpenCL?

an open standard for heterogeneous systems programming

low-level, derived from C, HW abstraction very similar to
CUDA

Advantages over CUDA

can be used for wide area of HW

open standard, independent on a single corporation

Disadvantages compared to CUDA

more complex API (similar to CUDA Driver API)

often less mature implementation

slower implementation of new HW features

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Portability

One implementation can be compiled for different types of HW

if we do not use extensions . . .

However, the implementation optimized for some type of HW may
be very slow on another HW

we need to re-optimize for different HW architectures

So, it is the standard for programming of various types of HW, but
we need to write different kernels for different architectures.

high importance of easily modifiable code or autotuning

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Performance Portability

Obrázek: SGEMM optimized for Fermi and Cypress, running on Fermi1.

1
Du et al. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU

Programming

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Performance Portability

Obrázek: SGEMM optimized for Fermi a Cypress, running on Cypress2.

2
Du et al. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU

Programming

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Main Differences

OpenCL is not integrated to C/C++

the OpenCL kernel is stored as a string, which is usually
compiled during program execution

kernel cannot share code with C/C++ codebase (user-defined
types, common functions etc.)

Kernels in OpenCL do not use pointers

we cannot dereference, use pointer arithmetics, link different
buffers

we can traverse the buffer by index, of course

OpenCL is strictly derived from C

no C++ stuff

OpenCL uses queues for HW devices

eases using multiple devices/streams

Queues can work out-of-order

eases load balancing

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

CUDA-OpenCL dictionary

Main differences in terminology

CUDA OpenCL

multiprocessor compute unit
scalar processor processing element

thread work-item
thread block work-group

grid NDRange
shared memory local memory

registers private memory

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Kernel

CUDA

__global__ void addvec (float *a , float *b , float *c)
{

int i = blockIdx . x*blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

OpenCL

__kernel void addvec (__global float * a , __global float * b ,
__global float * c)
{

int i = get_global_id (0) ;
c [i] = a [i] + b [i] ;

}

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Host Code

To execute the kernel, we need

to define a platform

device (at least one)
context
queues

allocate and copy data

compile the kernel code

configure the kernel and execute it

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Platform Definition

cl_uint num_devices_returned ;
cl_device_id cdDevice ;
err = clGetDeviceIDs (NULL , CL_DEVICE_TYPE_GPU , 1 ,
&cdDevice , &num_devices_returned) ;

cl_context hContext ;
hContext = clCreateContext (0 , 1 , &cdDevice , NULL , NULL , &err) ;

cl_command_queue hQueue ;
hQueue = clCreateCommandQueue (hContext , hDevice , 0 , &err) ;

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Platform Definition

The platform can have more devices

can be selected by the type (e.g. a GPU)

can be selected by vendor

we can also choose HW using finer information

number of cores
frequency
memory size
extensions (double precision, atomic operations etc.)

Each device needs at least one queue

cannot be used otherwise

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Memory Allocation and Copy

cl_mem hdA , hdB , hdC ;
hdA = clCreateBuffer (hContext , CL_MEM_READ_ONLY ,

cnDimension * sizeof (cl_float) , pA , 0) ;
. . .

There is no explicit copy – allocation and copy is performed in lazy
fashion, i.e., in time when data are needed. Consequently, the
target device is not defined in the memory allocation.

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Kernel Execution

const unsigned int cnBlockSize = 512 ;
const unsigned int cnBlocks = 3 ;
const unsigned int cnDimension = cnBlocks * cnBlockSize ;

cl_program hProgram ;
hProgram = clCreateProgramWithSource (hContext , 1 , sProgramSource

, 0 , 0) ;
clBuildProgram (hProgram , 0 , 0 , 0 , 0 , 0) ;

cl_kernel hKernel ;
hKernel = clCreateKernel (hProgram , ” addvec ” , 0) ;

clSetKernelArg (hKernel , 0 , sizeof (cl_mem) , (void *)&hdA) ;
clSetKernelArg (hKernel , 1 , sizeof (cl_mem) , (void *)&hdB) ;
clSetKernelArg (hKernel , 2 , sizeof (cl_mem) , (void *)&hdC) ;

clEnqueueNDRangeKernel (hQueue , hKernel , 1 , 0 , &cnDimension

, &cnBlockSize , 0 , 0 , 0) ;

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Vector Addition – Cleanup

clReleaseKernel (hKernel) ;
clReleaseProgram (hProgram) ;
clReleaseMemObj (hdA) ;
clReleaseMemObj (hdB) ;
clReleaseMemObj (hdC) ;
clReleaseCommandQueue (hQueue) ;
clReleaseContext (hContext) ;

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

AMD VLIW GPU Architecture

Older processors

Evergreen and Northern Islands

We will discuss main differences between AMD and NVIDIA GPU

the rest is very similar

Main differences

VLIW architecture

two memory access modes – the fast path and complete path

less sensitive to misaligned access, more sensitive to partition
camping analogy

wavefront (the warp analogy) has 64 threads

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

VLIW Architecture

VLIW

the instruction word includes several independent operations

static planning of instruction parallelism (dependencies
analyzed during compilation)

allows higher density of ALUs

threads should perform a code with sufficient instruction
parallelism and a compiler needs to recognize it

easier in typical graphics tasks than general computating ones

AMD GPU implements VLIW-5 or VLIW-4, 1 instruction is
SFU

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Optimizations for VLIW

Explicit vectorization

we work with vector variables (e.g., float4)

generation of VLIW is straightforward for the compiler

Implicit generation of VLIW

we write a scalar code

compiler tries to recognize independent instruction and create
VLIW code

we can help the compiler by unrolling and grouping the same
operations performing different iterations

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Optimizations for VLIW

Issues with VLIW

higher consumption of on-chip resources per thread (unrolling,
vector types)

we need independent instructions

problematic, e.g., with conditions

together with large wavefront it is highly sensitive to
divergence

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Global Memory Access

Fast path vs. complete path

fast path is significantly faster

fast path is used for load/store of 32-bit values

complete path is used for everything other (values of different
size, atomics)

the compiler needs to explicitly use one of those paths

access path is the same for the whole buffer, so we can
degrade the global memory bandwidth easily

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Fast path vs. complete path

__kernel void

CopyComplete (__global const float * input , __global float* output)
{

int gid = get_global_id (0) ;
if (gid < 0){

atom_add ((__global int *) output , 1) ;
}
output [gid] = input [gid] ;

}

The condition if (gid < 0) is never true, but enforces using
complete path.

bandwidth difference on Radeon HD 5870: 96GB/s vs.
18GB/s

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Global Memory Access

Permutation of thread-element mapping in wavefront

small penalization (< 10%)

better than c.c. < 1.2

Faster access using 128-bit in single instruction

e.g., accessing float4

122GB/s instead 96GB/s using HD 5870 and the memory
copy example

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Memory Channels

Radeons of 5000 series have memory channels interleaved by 256
bytes

all threads within wavefront should use the same channel

wavefront accessing the aligned contiguous block of 32-bit
elements (with arbitrary permutation of thread-element
mapping) uses the same channel

if multiple channels are accessed by wavefront, the access is
serialized

occurs e.g. in misaligned access

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Bank and Channel Conflicts

Analogy of partition camping

the global memory is accessed using banks and channels

concurrent workgroups should access via different channels
and different banks

bandwidth is limited otherwise

the arrangement of banks depends on the number of channels

for instance, 8 channels means that the bank switches every
2KB

high penalization of accessing the same channel and the same
bank (0.3 vs. 93GB/s on Radeon HD 5870)

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

Local Data Storage

Local Data Storage (LDS) is very similar to NVIDIA’s shared
memory

composed of 32 or 16 banks

the quarter-wafefront needs to access different banks
simultaneously

otherwise the bank conflicts appear
in the case of 32 banks we can efficiently use float2

broadcast is supported for a single value (analogy of c.c. 1.x)

Jǐŕı Filipovič OpenCL

Introduction CUDA → OCL AMD GPU Architecture

AMD GCN GPU Architecture

Nowadays architecture, known as Graphic Core Next.
Significantly different than previous generations

no VLIW, compute unit contains one scalar processor and four
vector processors

the code performed by threads is scalar (vectorized code
usually slower because of resource consumption)
conditions penalization is lower compared to VLIW

L1 cache for read and write

concurrent kernel invocations

Jǐŕı Filipovič OpenCL

	Introduction
	Introduction

	CUDA OCL
	Main Differences
	Terminology
	Vector Addition

	AMD GPU Architecture
	AMD VLIW GPU Architecture
	AMD GCN GPU Architecture

