OpenCL for x86 CPU and Intel MIC

Ji¥i Filipovic

Fall 2024

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
©0000

x86 CPU Architecture

Common features of (nearly all) modern x86 processors
@ core is complex, out-of-order instruction execution, large cache
@ multiple cache coherent cores in single chip
@ vector instructions (MMX, SSE, AVX)
o NUMA for multi-socket systems

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
[o] YeYelo)

OpenCL Device

Compute Device k

Compute Unit 1 Compute Unit n
Memory 1 Memory m Memory 1 Memory m

PE1 | PEm |

Local Local
Memory 1 Memory n
Global/Constant Memary Data Cache |

!

| Global Memaory |

| Constant Memory |

povit OpenCL for x86 CPU and Intel MIC

x86 CPU
[eJe] Yolo)

CPU and OpenCL

The projection of CPU HW to OpenCL model
@ CPU cores are compute units
@ vector ALUs are processing elements

@ so the number of work-items running in lock-step is

determined by instruction set (e.g., SSE, AVX) and data type
(e.g., float, double)

@ one or more work-groups create a CPU thread

o the number of work-groups should be at least equal to the
number of cores

o higher number of work-groups allows to better workload
balance (e.g., what if we have eight work-groups at six-core
CPU?), but creates overhead

@ work-items form serial loop, which may be vectorized

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
000@0

Implicit and Explicit Vectorization

Implicit vectorization
@ we write scalar code (similarly as for NVIDIA and AMD GCN)

@ the compiler generates vector instructions from work-items
(creates loop over work-items and vectorizes this loop)

@ better portability (we do not care about vector size and
richness of vector instruction set)

@ supported by Intel OpenCL, AMD OpenCL does not support it
Explicit vectorization

@ we use vector data types in our kernels
@ more complex programming, more architecture-specific

@ potentially better performance (we do not rely on compiler
ability to vectorize)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
0000®

Differences from GPU

Images
@ CPU does not support texture units, so they are emulated
@ better to not use...
Local memory
@ no special HW at CPU
@ brings overhead (additional memory copies)

@ but it is meaningful to use memory pattern common for using
local memory, as it improves cache locality

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
®000000

Intel MIC

What is MIC?
@ Many Integrated Core Architecture
e originated in Intel Larrabee project (x86 graphic card)
Existing hardware
@ Knights Corner (KNC) and Knights Landing (KNL) generation
@ large number of x86 cores

@ cores are connected by bi-directional ring bus (KNC) or mesh
(KNL)

@ cache-coherent system

@ connected to high-throughput memory

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
0®00000

KNC Processor

SBOX
PCle v2.0
controller,

DMA engines

CORE|L2

GBOX
(memory
controller)

Core Ring
CORE | |CORE CORE Interconnect (CRI)
[eJe)e)
=]

< DATA >
< ADDRESS >
cco @D D
D Distributed tag D
directory (DTD)
:
TD TD
TD TD

000

™

L2 L2 L2
[eJe)e)
CORE CORE CORE

povi&

GBOX

(memory
L2 controller)
CORE

OpenCL for x86 CPU and Intel MIC

Intel MIC
00®0000

KNL Processor

e
pce D e |

Gen 3 |

2x16 Xa
Mcnmﬂ MCDRAM 1x4 = DMl mcpram mcDRAM
=5 CIe

w
w

Tile
36 Tiles
connected by
2D Mesh
Interconnect

2m00
s200

wemzz>zo
wrmzz>In

a

Iy Iy I
MCDRAM MCDRAM MCDRAM MCDRAM
K Package /

Filipovi¢ OpenCL for x86 CPU and Intel MIC

Intel MIC
000000

Intel MIC

MIC core
@ relatively simple, KNC in-order, KNL based on Atom Airmont
@ use hyperthreading (4 threads per core)
e needs to be used to exploit full performance on KNC
o fully cache coherent, 324-32KB L1 cache (I+D), 512KB L2
cache
@ contain wide vector units (512-bit vectors)

e predicated execution
e gather/scatter instructions
e transcendentals

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
000000

Available Hardware

Xeon Phi

@ product based on MIC architecture
@ bootable processor, or PCI-E card with dedicated memory
e runs its own operating system

Xeon Phi 7210
o released 2016
@ 64 x86 cores at 1.3GHz
e 16 GB HBM RAM + DDR4 RAM up to 384 GB
@ 2.25TFlops DP, 4.5 TFlops SP
e 450 GB/sec HBM, 102 GB/s DDR4 memory bandwidth

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
0000080

Programming Models

Native programming model (KNC)
@ we can execute the code directly at accelerator
@ after recompilation, we can use the same code as for CPU
@ programming via OpenMP, MPI

Offload programming model (KNC)

@ application is executed at host

@ code regions are offloaded to accelerator, similarly as in the
case of GPUs

o by using #pragma offload with intel tools
e by using OpenCL

KNL is host processor.

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
000000e

MIC and OpenCL

The projection of MIC HW to OpenCL programming model is very
similar to CPU case

@ work-groups creates threads

@ work-items creates iterations of vectorized loops

e higher number of work-items due to wider vectors
o less sensitive to divergence and uncoalesced memory access
due to richer vector instruction set

@ high need of parallelism
e e.g., 64 cores executes 256 threads

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
©00000000

OpenCL Optimization for CPU and MIC

We will discuss optimizations for CPU and MIC together
@ many common concepts

o differences will be emphasized

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0®0000000

Parallelism

How to set a work-group size?
@ we do not need high parallelism to mask memory latency
@ but we need enough work-items to fill vector width (if implicit

vectorization is employed)
@ the work-group size should be divisible by vector length, it can
by substantially higher, if we don’t use local barriers
o Intel recommends 64-128 work-items without synchronizations
and 32-64 work-items with synchronizations
o general recommendation, needs experimenting . ..

@ we can let a compiler to choose the work-group size
How many work-groups?

o ideally multiple of (virtual) cores

@ be aware of NDRange tile effect (especially at MIC)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
00®000000

Thread-level Parallelism

Task-scheduling overhead
@ overhead of scheduling large number of threads

e issue mainly on MIC (CPU has lower number of cores)
@ problematic for light-weight work groups

o low workload per work-item
e small work-groups

@ can be detected by profiler easily
Barriers overhead
@ no HW implementation of barriers, they may be expensive

@ higher slowdown on MIC

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
000®00000

Vectorization

Branches
e if possible, use uniform branching (whole work-group follows
the same branch)
@ consider the difference
o if (get_global id(0) == 0)
o if (kernel arg == 0)
o divergent branches

e can forbid vectorization
o can be masked (both then and else branches are executed)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
[SleteteY Yetetele)

Vectorization

Scatter/gather

@ supported mainly on MIC

@ for non-consecutive memory access, compiler tries to generate
scatter/gatter instructions

e instructions use 32-bit indices
o get_global_id() returns size_t (64-bit)
e we can cast indices explicitly

@ avoid pointer arithmetics, use array indexing
e more transparent for the compiler

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
000008000

Memory Locality

Cache locality
@ the largest cache dedicated to core is L2

@ cache blocking — create work-groups using memory regions
fitting into L1, or not exceeding L2 cache

AoS

@ array of structures

@ more efficient for random access
SoA

@ structure of arrays

@ more efficient for consecutive access

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
00000000

Memory Access

Memory access pattern
@ consecutive memory access is the most efficient in both

architectures
@ however, there are differences
o KNC is in-order, so the memory access efficiency heavily
depends on prefetching, which is more successful for
consecutive access
o CPU does not support vector gather/scatter
Alignment
@ some vector instructions require alignment
o IMCI (MIC): 64-byte
e AVX: no requirements
e SSE: 16-byte

@ pad innermost dimension of arrays

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
000000000

Memory Access

Prefetching on KNC
@ prefetching is done by HW and by SW
o generated by the compiler
e also can be explicitly programmed (function void
prefetch(const __global gentype *p, size_t
num_elements))
@ explicit prefetching helps, e.g., in irregular memory access
pattern

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
00000000e

Memory Access

Concurrent R/W access to the same address

@ it is better to create local copies and merge them when
necessary (if possible)

@ reduces also synchronization

False sharing

@ accessing different addresses in the same cache line from
several threads

e cache line has 64 bytes on modern Intel processors
@ brings significant penalty

@ padding is the solution...

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
[Jelelelo)

Vector reduction

Rewritten CUDA version

@ uses very similar concept as was demonstrated in former
lecture, but run in constant number of threads

@ reaches nearly peak theoretical bandwidth on both NVIDIA
and AMD GPUs

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
0@000

Reduction for GPUs (1/2)

__kernel void reduce(__global const int#* in, __global int* out,
unsigned int n, __local volatile int *buf) {
unsigned int tid = get_local_id (0);
unsigned int i = get_group_id(0)*(get_local_size(0)x2)
+ get_local_id (0);
unsigned int gridSize = 256%2%get_num_groups (0);
buf [tid] = 0;

while (i < n) {
buf[tid] 4= in[i];
if (i + 256 < n)
buf[tid] 4= in[i+256];
i += gridSize;
}

barrier (CLK_LOCAL_MEM_FENCE);

ilipovit OpenCL for x86 CPU and Intel MIC

Reduction
00000

Reduction for GPUs (2/2)

//XXX hard optimization for 256—thread work groups
if (tid < 128)
buf [tid] 4= buf[tid + 128];
barrier (CLK_LOCAL_MEM_FENCE);
if (tid < 64)
buf [tid] 4= buf[tid + 64];
barrier (CLK_LOCAL_MEM_FENCE);

//XXX hard optimization for 32—bit warp size

//XXX problematic on new NVIDIA HW
if (tid < 32) {

buf [tid] 4= buf[tid + 32];
buf [tid] 4= buf[tid + 16];
buf [tid] 4= buf[tid + 8];
buf [tid] 4= buf[tid + 4];
buf [tid] += buf[tid + 2];
buf [tid] 4= buf[tid + 1];
}
if (tid = 0) atomic_add(out, buf[0]);

ilipovit OpenCL for x86 CPU and Intel MIC

Reduction
00080

Vector reduction

Execution of GPU code on CPU and Phi

o difficult to vectorize

@ overhead of local reduction, which is not necessary
Optimizations for CPU and MIC

@ the simplest solution is to use only necessary amount of
parallelism

@ work-groups of one vectorized work-item

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
0000e

Reduction for CPU and MIC

__kernel void reduce(__global const int16% in, __global int#* out,
const unsigned int n, const unsigned int chunk) {

unsigned int start = get_global_id(0)*chunk;
unsigned int end = start + chunk;
if (end > n) end = n;
int16 tmp = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
for (int i = start/16; i < end/16; i++)

tmp += in[i];

int sum = tmp.sO + tmp.sl + tmp.s2 4+ tmp.s3 + tmp.s4
+ tmp.sb5 + tmp.s6 + tmp.s7 + tmp.s8 + tmp.s9 + tmp.sa
+ tmp.sb + tmp.sc 4+ tmp.sd + tmp.se + tmp.sf;

atomic_add(out, sum);

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
©0000000000000

Electrostatic Potential Map

Important problem from computational chemistry

@ we have a molecule defined by position and charges of its
atoms

@ the goal is to compute charges at a 3D spatial grid around the
molecule

In a given point of the grid, we have

Vi= Z 47T60 rij

Where w; is charge of the j-th atom, rj; is Euclidean distance
between atom j and the grid point i and ¢ is vacuum permittivity.

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
0@000000000000

Algorithm Analysis

Parallelization

@ each grid point can be processed in parallel

@ not practical to parallelize loop going over atoms (reduction)
Performance bound of the naive algorithm

@ 11 arithmetic operations per one atom per grid point

e atom’s data require 16 bytes (4 floats — Cartesian position
and charge)

@ computation for one grid point is memory-bound

@ caches maintain locality for multiple grid points (atom reads
are synchronous)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
00@00000000000

Improving the Algorithm

We can compute a grid per 2D slices
@ enough parallelism

e distance in z-dimension can be precomputed (stored instead of
z-dimension of atom'’s data)

@ reduce number of arithmetic operations per atom per grid
point to 9

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
000@0000000000

Implementation

int xIndex = get_global_id (0);
int yIndex = get_global_id(1);
int outIndex = get_global_size(0) % yIndex + xIndex;

float coordX = gridSpacing * xIndex;
float coordY = gridSpacing * yIndex;

float energyValue = 0.0f;
for (int i = 0; i < numberOfAtoms; i++4) {
float dX = coordX — atomInfo[i].x;
float dY = coordY — atomInfo[i].y;
energyValue += atomInfo[i].w
* native_rsqrt(dXxdX + dY#dY 4+ atomInfo[i].z);
}

energyGrid[outIndex] += energyValue;

ifi Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
0000®000000000

Performance

Let's set slice size to 512 x 512, number of atoms to 4096, WG
size to 16 x 16, and measure the performance in number of atoms
evaluated per second.

| Code | 2xCPU | MIC | GPU |
’ slices ‘ 25.8 Geval/s ‘ 48.1 Geval/s ‘ 45.0 Geval/s ‘

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
00000®00000000

Performance

Let's optimize WG size
@ 8 x 2 for CPU, 8 x 1 for MIC, 16 x 4 for GPU

| Code | 2xCPU | MIC | GPU |

slices 25.8 Geval/s | 48.1 Geval/s | 45.0 Geval/s
optimized WG | 26.1 Geval/s | 54.4 Geval/s | 45.8 Geval/s

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
000000@0000000

Removing Redundancy

Are there any redundant work among WIs?
@ WIs in the same warp/vector read the same atom data
@ WiIs in the same row compute the same y-distance

@ redundancy removing critical for GPU, but may also improve
performance on CPU and MIC (if compiler fails to remove
invariant code)

We can assign more work per WI

@ "unrolling of the outer (parallelized) loop”, so a WI computes
several grid points at a row

@ increases private memory locality (atom data are used for
more grid points)

@ removes some redundant computation of y-distance

@ reduces strong scaling, uses more registers

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
0000000000000

Performance

We have tested from 1 to 8 grid points and re-optimize WG size.
@ unroll 8x for CPU, 2x for MIC and 8x for GPU

| Code | 2xCPU | MIC | GPU |
slices 25.8 Geval/s | 48.1 Geval/s | 45.0Geval/s
optimized WG | 26.1 Geval/s | 54.4 Geval/s | 45.8 Geval/s
unrolling 54.5 Geval/s | 60.9 Geval/s | 162.0 Geval/s

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
00000000800000

Memory Access Optimization

CPU and MIC often prefers SoA

@ we can split x, y, z-dimensions and charge w into separate
arrays

GPU caches global memory in L2 cache only

@ we can use constant memory for atom data

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
00000000080000

Performance

We have tested from 1 to 8 grid points and re-optimize WG size.

@ CPU and MIC prefers SoA, GPU prefers constant memory
(more visible effect if unrolling is disabled)

| Code | 2xCPU | MIC | GPU |
slices 25.8 Geval/s | 48.1 Geval/s | 45.0Geval/s
optimized WG 26.1 Geval/s | 54.4 Geval/s | 45.8 Geval/s
unrolling 54.5 Geval/s | 60.9 Geval/s | 162.0 Geval/s
optimized mem. | 60.2 Geval/s | 61.1 Geval/s | 164.9 Geval/s

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
0000000000e000

Manual Vectorization

Vectorization of memory access
@ we pack atoms data into vectors (both in SoA and AoS)
@ usable to enforce vectorized data access

Vectorized computation

@ we read vectorized data and perform vectorized computation
in each WI

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
00000000000e00

Performance

We have tested using vector from size 2 to size 8.

@ CPU prefers to not vectorize, MIC prefers SoA with vector
size 4 and scalar computation, GPU prefers scalar
computation with AoS using vector size 8 (i.e. two atoms are
packed into single vector)

Code [2xCPU | MIC | GPU |
slices 25.8 Geval/s | 48.1 Geval/s | 45.0Geval/s
optimized WG | 26.1 Geval/s | 54.4 Geval/s | 45.8 Geval/s
unrolling 54.5 Geval/s | 60.9 Geval/s | 162.0 Geval/s
optimized mem. | 60.2 Geval/s | 61.1 Geval/s | 164.9 Geval/s
vectorized 62.4 Geval/s | 168.3 Geval/s

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Electrostatic Potential Map
000000000000e0

Performance without squere root

The performance of MIC is quite low and optimizations does not
improve it

@ slower implementation of native_rsqrt

@ depsite it leads to uncorrect algorithm, we have tested
performance with removed reciprocal square root

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Performance without squere root

Electrostatic Potential Map

0000000000000

[Code 2% CPU | MIC | GPU |
slices 30.0 Geval/s | 103.8 Geval/s | 43.6 Geval/s
optimized WG | 30.6 Geval/s | 114.3 Geval/s | 43.8 Geval/s
unrolling 68.3 Geval/s | 148.9 Geval/s | 221.8 Geval/s
optimized mem. | 70.9 Geval/s | 159.3 Geval/s | 260.0 Geval/s
vectorized 175.4 Geval/s | 266.4 Geval/s

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

	x86 CPU
	x86 CPU

	Intel MIC
	Intel MIC

	Optimization
	Optimization

	Reduction
	Reduction

	Electrostatic Potential Map
	Electrostatic Potential Map

