Autotuning

Introduction to autotuning, overview of our research

Jifi Filipovit et al.

Fall 2024

Ji#i Filipovic et al. Autotuning



Introduction
©00000000000000

Program development workflow

Implementation questions
@ which algorithm to use?
@ how to implement the algorithm efficiently?

@ how to set-up a compiler?

Ji#i Filipovi¢ et al. Autotuning



Introduction
0@0000000000000

Program development workflow

Compiler's questions
@ how to map variables to registers?
@ which unrolling factor to use for a loop?
@ which functions should be inlined?

@ and many others...
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Program development workflow

Execution
@ how many nodes and threads assign to the program?
@ should accelerators be used?
@ how to mix MPI and OpenMP threads?
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Program development workflow

Execution
@ how many nodes and threads assign to the program?
@ should accelerators be used?
@ how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.

Ji#i Filipovi¢ et al. Autotuning



Introduction
000@00000000000

Tuning of the program

We can empirically tune those possibilities

use different algorithm

change code optimizations

use different compiler flags

execute in a different number of threads

etc.

Ji#i Filipovi¢ et al. Autotuning



Introduction
0000@0000000000

Tuning of the program

A tuning allows us to outperform heuristics — we just test what
works better.
@ however, we have to invest more time into development
@ there are vertical dependencies, so we cannot perform tuning
steps in isolation
@ the optimum usually depends on hardware and input
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Autotuning

The tuning can be automated
@ then we talk about autotuning
Autotuning
@ in design time, we define the space of tuning parameters
@ each tuning parameter defines some property of the tuned
application
@ during autotuing, a search method is used to traverse assign
optimal values for tuning parameters

@ performed according to some objective, usually performance
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Introduction
000000@00000000

Taxonomy of Autotuning

Tuning scope
@ what properties of the application are changed by autotuner

@ e.g. compiler flags, number of threads, source code
optimizations parameters

Tuning time
e offline autotuning (performed once, e.g., after SW installation)
e dynamic autotuning (performed in runtime)

Developer involvement

@ transparent, or requiring only minor developer assist (e.g.
compiler flags tuning)

@ application-level, requiring an expert programmer to identify
tunning opportunities (e.g. code optimizations parameters
tuning)
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Our focus

We target autotuning of code optimization parameters
@ the source code is changed during a tuning process
@ the user defines how tuning parameters influence the code
e very powerful (source code may control nearly everything)

@ autotuning framework implementation is difficult
e requires recompilation
e runtime checks of correctness/precision
e non-trivial expression of tuning parameters
e we have no implicit assumptions about tuning space
@ heterogeneous computing (we are tuning OpenCL or CUDA
code)

o offline and dynamic autotuning
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Motivation Example

Let's solve a simple problem — vectors addition
o we will use CUDA

@ we want to optimize the code
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Motivation Example

__global__ void add(float* const a, float* b) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
bl[i]l += alil;

}

It should not be difficult to write different variants of the code...
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Optimization

__global__ void add(float4s const a, floatds b) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
b[i]l += alil;

}

Kernel has to be executed with n/4 threads.
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Optimization

__global__ void add(float2% const a, float2* b) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
b[i]l += alil;

}

Kernel has to be executed with n/2 threads.
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Optimization

__global__ void add(float* const a, float* b, const int n) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
for (; i < n; i += blockDim.x*gridDim.x)
b[i] += alil;
}

Kernel has to be executed with n/m threads, where m can be
anything.
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What to Optimize?

Mixture of:
@ thread-block size
@ vector variables
@ serial work

i.e. 3D space — and this is trivial example...
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Autotuning

Autotuning tools explore code parameters automatically

__global__ void
add (VECTYPEx const a, VECTYPEx b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
#if SERIAL_WORK > 1

for (; i < n; i += blockDim.x*gridDim.x)
#endif

b[i] += alil;

}

The code executing kernel add has to configure parallelism
according to values of VECTYPE and SERIAL WORK tuning
parameters.

Filipovi¢ et al. Autotuning
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Kernel Tuning Toolkit

We have developed a Kernel Tuning Toolkit (KTT) [5]

@ a framework allowing to tune code parameters for OpenCL
and CUDA
@ allows both offline and dynamic tuning
@ enables cross-kernel optimizations
@ tuning problem described in C++, python, or JSON input
@ mature implementation, documented, with examples
@ https://github.com/HiPerCoRe/KTT
[5] Filip Petrovi¢ and Ji¥i Filipovi¢. “Kernel Tuning Toolkit”. In: SoftwareX 22 (2023), p. 101385
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Kernel Tuning Toolkit

Typical workflow in C++ similar to CUDA/OpenCL
@ initialize the tuner for a specified device
@ create an input/output of the kernel
@ create a kernel
@ create a tuning space for the kernel
@ assign input/output to the kernel
@ execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.
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KTT Sample Code

// Initialize tuner and kernel definition
ktt::Tuner tuner (platformIndex, devicelIndex);

const ktt::DimensionVector ndRangeDimensions (inputSize);

const ktt::DimensionVector workGroupDimensions (128);

ktt::Kernelld fooDef = tuner.AddKernelDefinitionFromFile("foo",
ndRangeDimensions, workGroupDimensions);

// Creation and assign of kernel arguments
ktt::ArgumentId a = tuner.AddArgumentVector (srch,
ktt::ArgumentAccessType::ReadOnly);
ktt::ArgumentId b = tuner.AddArgumentVector (srcB,
ktt::ArgumentAccessType::WriteOnly);
tuner.SetArguments (fooDef, {a, bl});

// Create kernel and %ts tuning space
ktt::Kernelld foo = tuner.CreateSimpleKernel("foo", fooDef);
tuner .AddParameter (foo, "UNROLL", {1, 2, 4, 8});

tuner.Tune (foo);
tuner.SaveResult (foo, "foo-output", ktt::PrintFormat::JSON);
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Alternative KTT usage

Python
@ similar to C++ (use C++ bindings)
@ input/output as numpy arrays
@ easier rapid experimenting

JSON

o declarative way

o defines input/output (generated, binary)
e defines tuning space
e configures tuning space

@ can be loaded in C++/python, or run by provided miniapp

@ allows interoperability between KTT and Kernel Tuner (and
hopefuly more autotuners in future)

Ji#i Filipovi¢ et al. Autotuning
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Kernel Tuning Toolkit

In practise, we usually need more functionality

@ tuning parameters can affect parallelism configuration (e.g.
block and grid size in CUDA)
o by pre-defined functions (e.g. multiply specified block/grid
dimmension)
e by lambda function provided by programmer
@ some combinations of tuning parameters can be discarded a
priori
e lambda functions constraining tuning space
@ KTT can check, if tuned kernel runs successfully
e automatic check of successful execution
e user can provide reference kernel, or reference class, and
comparing function, KTT compares results automatically
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Advanced features of KTT

Cross-kernel optimizations

@ the user can define a kernel launcher: the code defining how
are kernel(s) executed

o default launcher just execute a kernel
can query tuning parameters
can call multiple kernels or the same kernel multiple times
can execute host code, and host-device memory transfers

allows tuning code parameters with wider influence, as tuned
kernels do not need to be functionally equivalent

Ji#i Filipovi¢ et al. Autotuning



Kernel Tuning Toolkit
000000@0000

Reduction
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Advanced features of KTT

Dynamic autotuning [6]
@ dynamic tuning performs autotuning during application
runtime
@ KTT can execute the best kernel known so far to perform
kernel's task

@ or try different combination of tuning parameters before the
execution

@ tuning is transparent for the application

@ tuning can be queried in any time

[6] F. Petrovi¢ et al. “A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic
autotuning with Kernel Tuning Toolkit". In: Future Generation Computer Systems 108 (2020), pp. 161-177. DOI
10.1016/j.future.2020.02.069
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Dynamic Tuning Sample

// Main application loop
while (application_run) {

if (tuningRequired)
tuner.Tunelteration(foo, output);
else {
ktt::KernelConfiguration best =
tuner ->GetBestConfiguration (foo);
tuner .Run(foo, best, output);

}

Ji#i Filipovi¢ et al. Autotuning
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Dynamic tuning

Dynamic autotuning is challenging

@ when the kernel is executed, there must be no significant
performance drop

@ automatic memory management has to move only necessary
data

@ KTT has to support asynchronous execution of

e memory copy, host and device code execution
e simultaneous execution of multiple kernels

Parallelism in KTT
@ intra-launcher: parallelism inside kernel launcher

@ global parallelism: asynchronous execution of multiple
launcher instances

During autotuning, global parallelism has to be disabled.

ipovit et al. Autotuning
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KTT Architecture
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Benchmark set

Benchmark dimensions | configurations
BiCG 11 5,122
Convolution 10 5,248
Coulomb 3D 8 1,260
GEMM 15 241,600
GEMM batched 11 424
Hotspot 6 480
Transpose 9 10,752
N-body 8 9,408
Reduction 5 175
Fourier 6 360

Table: A list of the benchmarks and the size and dimensionality (i.e., the
number of tuning parameters) of their tuning spaces.
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Testbed setup

Device Architecture SP perf. | BW
2x Xeon E5-2650 Sandy Bridge 512 | 102
Xeon Phi 5110P Knights Corner 2,022 | 320
Tesla K20 Kepler 3,524 | 208
GeForce GTX 750 Maxwell 1,044 80
GeForce GTX 1070 Pascal 5,783 | 256
Radeon RX Vega 56 | GCN 5 8,286 | 410
GeForce RTX 2080Ti | Turing 11,750 | 616

Table: Devices used in our benchmarks. Arithmetic performance (SP
perf.) is measured in single-precision GFlops, memory bandwidth (BW) is
measured in GB/s.
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Performance

Benchmark 2080Ti 1070 750 K20 Vegab6 E5-2650 5110P
BiCG 88.3% 84.7% 8L.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%
Hotspot 1.35% 1.94% 2.06% 1.4% 2.88x 1.2% 12.8%

Table: Performance of benchmarks autotuned for various hardware
devices. The performance relative to the theoretical peak of devices.
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Performance portability

GPU—GPU
Benchmark avgtstdev worst  failed
BiCG 89.0%+12.3% 57% 1
Convolution 79.4%+14.9% 55% 3
Coulomb 3D 95.8%46.5% 67% 0
GEMM 83.6%+16.4% 31% 0
GEMM batched | 85.4%=+17% 3% 0
Hotspot 80.3%+17.5% 46% 3
Transpose 85.0%+21.9% 8% 3
N-body 78.8%+24.2% 2% 3
Reduction 88.4%+24% 12% 3
Fourier 74.5%+30% 31% 0

Table: Relative performance of benchmarks ported across GPU
architectures without re-tuning.
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Dynamic autotuining of Batched GEMM
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Figure: Batched GEMM on GeForce GTX 1070.
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Dynamic autotuining of Batched GEMM
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Figure: Batched GEMM on Tesla K20.
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3D Fourier Reconstruction

Process #0
distribute tasks | (batches of samples)

rocess #1 | Process #m

here are samples to process

update 3D regular grid

update 3D regular grid

reduce partial grids

Figure: Performance of dynamic tuned 3D Fourier reconstruction [8] .

[8] D. Streldk et al. “A GPU Acceleration of 3D Fourier Reconstruction in Cryo-EM". In: The International
Journal of High Performance Computing Applications 0 (0 2019). poI: 10.11777/1094842019832958
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3D Fourier Reconstruction

2080Ti | 1070 | 750 680
2080Ti | 100% | 99% | 31% | 49%
1070 99% 100% | 31% | 50%
750 43% 67% | 100% | 94%
680 60% 72% | 71% | 100%

Table: Performance portability of 3D Fourier reconstruction with
128 x 128 samples.
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3D Fourier Reconstruction

128x128 | 91x91 | 64x64 | 50x50 | 32x32
128x128 | 100% 100% | 77% 70% 32%
91x91 100% 100% | 76% 68% 33%

64x64 94% 94% 100% | 91% 67%
50x50 79% 78% 98% 100% | 86%
32x32 65% 67% 80% 92% 100%

Table: Performance portability on GeForce GTX1070 for different
samples.
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3D Fourier Reconstruction

best runtime | tuning 50 tuning full
2080Ti | 1m40s 88% + 3% | 54%
1070 5m49s 96% + 2% | 79%
750 16m59s 92% + 4% | 72%
680 15m12s 94% + 2% | 75%

Table: The relative performance of dynamically-tuned 3D Fourier
reconstruction.
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Dynamic autotuining of SpMV

SpMV is important kernel in many applications
@ perform multiplication of sparse matrix with dense vector
@ system of equations solving, graph processing, ...
Challenging to compute efficienty

@ optimization decisions strongly dependent on input structure

Ji#i Filipovi¢ et al. Autotuning
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Dynamic autotuining of SpMV

Multiple libraries available

@ cuSPARSE - closed-source library actively developed by
NVIDIA

@ CUSP — open-source library released by NVIDIA, slower
compared to cuSPARSE

Our goal

@ insert dynamic autotuning into CUSP for DIA, ELL [2] , COO
and CSR [1] formats

@ minimize required changes in code using CUSP

[2] M. Demek. “Dynamic autotuning of SpMV kernel in CUSP library”. MA thesis. Masaryk University, 2023
[1] F. Bréblik. “Dynamic autotuning of SpMV kernel in CUSP library”. MA thesisi Masaryk University, 2024

Ji#i Filipovic et al. Autotuning



Dynamic autotuining of SpMV

Evaluation
000000000000e

1563

cusP
CUSPARSE




Related Research
©000000000000

What do we use KTT for?

So we have developed fancy autotuning framework...
@ which is interesting work anyway, but we can do even more...
In GPU-accelerated applications

@ used during program development (exploration of possible
optimizations)
@ manually added into applications to enable dynamic tuning

@ used in cryo-electron microscopy suite Xmipp

Ji#i Filipovi¢ et al. Autotuning
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What do we use KTT for?

Some more theoretical (but still with clear practical usage) tasks
@ searching tuning space
@ tuning budget estimation

@ interoperability with other tools

Ji#i Filipovi¢ et al. Autotuning
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Searching tuning space

Why is searching tuning spaces important and difficult?
@ important to speed-up autotuning convergence

@ discrete many-dimensional non-convex spaces are hard to
optimize with mathematical optimization

@ as spaces changes with hardware or input, it is also hard task
for machine learning (if ML model relates tuning parameters
to runtime, it becomes invalid)

We proposed a novel method [3]

@ decomposing relation between tuning parameters and runtime:
ML used for relating tuning parameters to performance
counters, expert system used steer optimization method

@ ML model is independent on HW and input

[3] J. Filipovi¢ et al. “Using hardware performance counters to speed up autotuning convergence on GPUs".
In: Journal of Parallel and Distributed Computing 160 (2022), pp. 16-35. 1ssN: 0743-7315. DoI
https://doi.org/10.1016/j.jpdc.2021.10.003
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Flgu €. Dependence between a tuning parameter and various properties of the Coulomb 3D kernel running with
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parameter changing thread coarsening. The y-axis shows normalized values of selected properties: kernel runtime,
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Searching tuning space

Main idea behind the searcher

@ relation between tuning parameters and performance counters
measuring amount of operations remains stable — can be
captured by ML model

@ relation between tuning parameters and performance counters
measuring stress of GPU subsystems depend on GPU and
input — can be observed during tuning and used to identify
bottlenecks

@ an expert system asks ML model which tuning parameters to
change to supress bottlenecks
@ mimics what programmers are doing

e they profile the code to observe bottlenecks, and use their
understanding of the code to introduce changes supressing the
bottlenecks

Ji#i Filipovi¢ et al. Autotuning
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Figure: Schematic view of the searcher workflow. The boxes show
program components, cylinders show data objects.
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Searching tuning space
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Figure: Convergence of the GEMM benchmark using KTT and Kernel
Tuner. Left: convergence speed in time. Right: comparison of iterations
(empirical tests).
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Tuning budget estimation

Tuning budget estimation

@ the problem: as autotuning itself requires computational
resources, it is also subject of optimization

o therefore, estimating when to stop autotuning is crucial, as it
balances

e overhead of tuning process (number of tuning steps x average
time of tuned kernel with re-compilation)
e expected improvement of speed of tuned kernel

@ we shown it is possible to guess from historical data and
regression of tuning searching convergence [4]

[4] Jaroslav Ol'ha et al. “Estimating resource budgets to ensure autotuning efficiency”. In: Available at
SSRN 4661862 (2024)
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Tuning budget estimation
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Figure: Example of tuning space searcher convergence.
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Tuning budget estimation
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Tuning budget estimation
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Figure: Example of total runtime depending on performed tuning steps.
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KTT interoperability

KTT can be connected with different frameworks

@ programming heterogeneous nodes is generaly challenging:
distribution of work among multiple accelerators and CPU,
data distribution

@ StarPU implements task-based parallelism, it executes DAG of
data-dependent tasks on heterogeneous nodes

e alternative implementation of tasks
e StarPU schedules data movement and task execution across
the node

@ connection of KTT and StarPU makes tasks tunable [7]

e tuning transparent to user
o decoples codes of domain and HPC experts

[7] D. Streldk et al. “Umpalumpa: a framework for efficient execution of complex image processing workloads
on heterogeneous nodes”. In: Computing (2023), pp. 1-29
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Future work

Still many interesting topics untouched
@ autotuning for energy efficiency
@ optimizing optimization spaces
@ high-level programming of autotuned code

@ non-trivial applications

Ji#i Filipovi¢ et al. Autotuning
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