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Program development workflow

Implementation questions

which algorithm to use?

how to implement the algorithm efficiently?

how to set-up a compiler?
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Program development workflow

Compiler’s questions

how to map variables to registers?

which unrolling factor to use for a loop?

which functions should be inlined?

and many others...
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Program development workflow

Execution

how many nodes and threads assign to the program?

should accelerators be used?

how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.
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Program development workflow

Execution

how many nodes and threads assign to the program?

should accelerators be used?

how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.
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Tuning of the program

We can empirically tune those possibilities

use different algorithm

change code optimizations

use different compiler flags

execute in a different number of threads

etc.
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Tuning of the program

A tuning allows us to outperform heuristics – we just test what
works better.

however, we have to invest more time into development

there are vertical dependencies, so we cannot perform tuning
steps in isolation

the optimum usually depends on hardware and input

Jǐŕı Filipovič et al. Autotuning
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Autotuning

The tuning can be automated

then we talk about autotuning

Autotuning

in design time, we define the space of tuning parameters

each tuning parameter defines some property of the tuned
application

during autotuing, a search method is used to traverse assign
optimal values for tuning parameters

performed according to some objective, usually performance
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Taxonomy of Autotuning

Tuning scope

what properties of the application are changed by autotuner

e.g. compiler flags, number of threads, source code
optimizations parameters

Tuning time

offline autotuning (performed once, e.g., after SW installation)

dynamic autotuning (performed in runtime)

Developer involvement

transparent, or requiring only minor developer assist (e.g.
compiler flags tuning)

application-level, requiring an expert programmer to identify
tunning opportunities (e.g. code optimizations parameters
tuning)
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Our focus

We target autotuning of code optimization parameters

the source code is changed during a tuning process

the user defines how tuning parameters influence the code

very powerful (source code may control nearly everything)

autotuning framework implementation is difficult

requires recompilation
runtime checks of correctness/precision
non-trivial expression of tuning parameters
we have no implicit assumptions about tuning space

heterogeneous computing (we are tuning OpenCL or CUDA
code)

offline and dynamic autotuning
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Motivation Example

Let’s solve a simple problem – vectors addition

we will use CUDA

we want to optimize the code
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Motivation Example

__global__ void add(float* const a, float* b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

It should not be difficult to write different variants of the code...
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Optimization

__global__ void add(float4∗ const a, float4∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.
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Optimization

__global__ void add(float2∗ const a, float2∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/2 threads.
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Optimization

__global__ void add(float* const a, float* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

for (; i < n; i += blockDim.x*gridDim.x)

b[i] += a[i];

}

Kernel has to be executed with n/m threads, where m can be
anything.
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What to Optimize?

Mixture of:

thread-block size

vector variables

serial work

i.e. 3D space – and this is trivial example...
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Autotuning

Autotuning tools explore code parameters automatically

__global__ void

add(VECTYPE* const a, VECTYPE* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

#if SERIAL WORK > 1

for (; i < n; i += blockDim.x*gridDim.x)

#endif

b[i] += a[i];

}

The code executing kernel add has to configure parallelism
according to values of VECTYPE and SERIAL WORK tuning
parameters.
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Kernel Tuning Toolkit

We have developed a Kernel Tuning Toolkit (KTT) [5]

a framework allowing to tune code parameters for OpenCL
and CUDA

allows both offline and dynamic tuning

enables cross-kernel optimizations

tuning problem described in C++, python, or JSON input

mature implementation, documented, with examples

https://github.com/HiPerCoRe/KTT

[5] Filip Petrovič and Jǐŕı Filipovič. “Kernel Tuning Toolkit”. In: SoftwareX 22 (2023), p. 101385
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Kernel Tuning Toolkit

Typical workflow in C++ similar to CUDA/OpenCL

initialize the tuner for a specified device

create an input/output of the kernel

create a kernel

create a tuning space for the kernel

assign input/output to the kernel

execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.
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Introduction Kernel Tuning Toolkit Evaluation Related Research

KTT Sample Code

// Initialize tuner and kernel definition

ktt::Tuner tuner(platformIndex , deviceIndex );

const ktt:: DimensionVector ndRangeDimensions(inputSize );

const ktt:: DimensionVector workGroupDimensions (128);

ktt:: KernelId fooDef = tuner.AddKernelDefinitionFromFile("foo", kernelFile ,

ndRangeDimensions , workGroupDimensions );

// Creation and assign of kernel arguments

ktt:: ArgumentId a = tuner.AddArgumentVector(srcA ,

ktt:: ArgumentAccessType :: ReadOnly );

ktt:: ArgumentId b = tuner.AddArgumentVector(srcB ,

ktt:: ArgumentAccessType :: WriteOnly );

tuner.SetArguments(fooDef , {a, b});

// Create kernel and its tuning space

ktt:: KernelId foo = tuner.CreateSimpleKernel("foo", fooDef );

tuner.AddParameter(foo , "UNROLL", {1, 2, 4, 8});

tuner.Tune(foo);

tuner.SaveResult(foo , "foo -output", ktt:: PrintFormat ::JSON);
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Alternative KTT usage

Python

similar to C++ (use C++ bindings)

input/output as numpy arrays

easier rapid experimenting

JSON

declarative way

defines input/output (generated, binary)
defines tuning space
configures tuning space

can be loaded in C++/python, or run by provided miniapp

allows interoperability between KTT and Kernel Tuner (and
hopefuly more autotuners in future)
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Kernel Tuning Toolkit

In practise, we usually need more functionality

tuning parameters can affect parallelism configuration (e.g.
block and grid size in CUDA)

by pre-defined functions (e.g. multiply specified block/grid
dimmension)
by lambda function provided by programmer

some combinations of tuning parameters can be discarded a
priori

lambda functions constraining tuning space

KTT can check, if tuned kernel runs successfully

automatic check of successful execution
user can provide reference kernel, or reference class, and
comparing function, KTT compares results automatically
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Advanced features of KTT

Cross-kernel optimizations

the user can define a kernel launcher : the code defining how
are kernel(s) executed

default launcher just execute a kernel

can query tuning parameters

can call multiple kernels or the same kernel multiple times

can execute host code, and host-device memory transfers

allows tuning code parameters with wider influence, as tuned
kernels do not need to be functionally equivalent
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Reduction
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Advanced features of KTT

Dynamic autotuning [6]

dynamic tuning performs autotuning during application
runtime

KTT can execute the best kernel known so far to perform
kernel’s task

or try different combination of tuning parameters before the
execution

tuning is transparent for the application

tuning can be queried in any time

[6] F. Petrovič et al. “A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic
autotuning with Kernel Tuning Toolkit”. In: Future Generation Computer Systems 108 (2020), pp. 161–177. doi:
10.1016/j.future.2020.02.069
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Dynamic Tuning Sample

// Main application loop

while(application_run) {

...

if (tuningRequired)

tuner.TuneIteration(foo , output );

else {

ktt:: KernelConfiguration best =

tuner ->GetBestConfiguration(foo);

tuner.Run(foo , best , output );

}

...

}
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Dynamic tuning

Dynamic autotuning is challenging

when the kernel is executed, there must be no significant
performance drop

automatic memory management has to move only necessary
data

KTT has to support asynchronous execution of

memory copy, host and device code execution
simultaneous execution of multiple kernels

Parallelism in KTT

intra-launcher: parallelism inside kernel launcher

global parallelism: asynchronous execution of multiple
launcher instances

During autotuning, global parallelism has to be disabled.
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KTT Architecture
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Benchmark set

Benchmark dimensions configurations
BiCG 11 5,122
Convolution 10 5,248
Coulomb 3D 8 1,260
GEMM 15 241,600
GEMM batched 11 424
Hotspot 6 480
Transpose 9 10,752
N-body 8 9,408
Reduction 5 175
Fourier 6 360

Table: A list of the benchmarks and the size and dimensionality (i.e., the
number of tuning parameters) of their tuning spaces.
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Testbed setup

Device Architecture SP perf. BW
2× Xeon E5-2650 Sandy Bridge 512 102
Xeon Phi 5110P Knights Corner 2,022 320
Tesla K20 Kepler 3,524 208
GeForce GTX 750 Maxwell 1,044 80
GeForce GTX 1070 Pascal 5,783 256
Radeon RX Vega 56 GCN 5 8,286 410
GeForce RTX 2080Ti Turing 11,750 616

Table: Devices used in our benchmarks. Arithmetic performance (SP
perf.) is measured in single-precision GFlops, memory bandwidth (BW) is
measured in GB/s.
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Performance

Benchmark 2080Ti 1070 750 K20 Vega56 E5-2650 5110P
BiCG 88.3% 84.7% 81.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%
Hotspot 1.35× 1.94× 2.06× 1.4× 2.88× 1.2× 12.8×

Table: Performance of benchmarks autotuned for various hardware
devices. The performance relative to the theoretical peak of devices.
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Performance portability

GPU→GPU
Benchmark avg±stdev worst failed
BiCG 89.0%±12.3% 57% 1
Convolution 79.4%±14.9% 55% 3
Coulomb 3D 95.8%±6.5% 67% 0
GEMM 83.6%±16.4% 31% 0
GEMM batched 85.4%±17% 37% 0
Hotspot 80.3%±17.5% 46% 3
Transpose 85.0%±21.9% 8% 3
N-body 78.8%±24.2% 2% 3
Reduction 88.4%±24% 12% 3
Fourier 74.5%±30% 31% 0

Table: Relative performance of benchmarks ported across GPU
architectures without re-tuning.
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Dynamic autotuining of Batched GEMM
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Figure: Batched GEMM on GeForce GTX 1070.
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Dynamic autotuining of Batched GEMM
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Figure: Batched GEMM on Tesla K20.
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3D Fourier Reconstruction

Figure: Performance of dynamic tuned 3D Fourier reconstruction [8] .

[8] D. Sťrelák et al. “A GPU Acceleration of 3D Fourier Reconstruction in Cryo-EM”. In: The International
Journal of High Performance Computing Applications 0 (0 2019). doi: 10.1177/1094342019832958
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3D Fourier Reconstruction

2080Ti 1070 750 680
2080Ti 100% 99% 31% 49%
1070 99% 100% 31% 50%
750 43% 67% 100% 94%
680 60% 72% 71% 100%

Table: Performance portability of 3D Fourier reconstruction with
128× 128 samples.
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3D Fourier Reconstruction

128x128 91x91 64x64 50x50 32x32
128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

Table: Performance portability on GeForce GTX1070 for different
samples.
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3D Fourier Reconstruction

best runtime tuning 50 tuning full
2080Ti 1m40s 88% ± 3% 54%
1070 5m49s 96% ± 2% 79%
750 16m59s 92% ± 4% 72%
680 15m12s 94% ± 2% 75%

Table: The relative performance of dynamically-tuned 3D Fourier
reconstruction.
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Dynamic autotuining of SpMV

SpMV is important kernel in many applications

perform multiplication of sparse matrix with dense vector

system of equations solving, graph processing, . . .

Challenging to compute efficienty

optimization decisions strongly dependent on input structure
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Dynamic autotuining of SpMV

Multiple libraries available

cuSPARSE – closed-source library actively developed by
NVIDIA

CUSP – open-source library released by NVIDIA, slower
compared to cuSPARSE

Our goal

insert dynamic autotuning into CUSP for DIA, ELL [2] , COO
and CSR [1] formats

minimize required changes in code using CUSP

[2] M. Demek. “Dynamic autotuning of SpMV kernel in CUSP library”. MA thesis. Masaryk University, 2023

[1] F. Brábĺık. “Dynamic autotuning of SpMV kernel in CUSP library”. MA thesis. Masaryk University, 2024
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Dynamic autotuining of SpMV

Figure: SpMV benchmark for CSR format.
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What do we use KTT for?

So we have developed fancy autotuning framework...

which is interesting work anyway, but we can do even more...

In GPU-accelerated applications

used during program development (exploration of possible
optimizations)

manually added into applications to enable dynamic tuning

used in cryo-electron microscopy suite Xmipp
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What do we use KTT for?

Some more theoretical (but still with clear practical usage) tasks

searching tuning space

tuning budget estimation

interoperability with other tools

Jǐŕı Filipovič et al. Autotuning
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Searching tuning space

Why is searching tuning spaces important and difficult?

important to speed-up autotuning convergence

discrete many-dimensional non-convex spaces are hard to
optimize with mathematical optimization

as spaces changes with hardware or input, it is also hard task
for machine learning (if ML model relates tuning parameters
to runtime, it becomes invalid)

We proposed a novel method [3]

decomposing relation between tuning parameters and runtime:
ML used for relating tuning parameters to performance
counters, expert system used steer optimization method

ML model is independent on HW and input

[3] J. Filipovič et al. “Using hardware performance counters to speed up autotuning convergence on GPUs”.
In: Journal of Parallel and Distributed Computing 160 (2022), pp. 16–35. issn: 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2021.10.003
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Searching tuning space
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Figure: Dependence between a tuning parameter and various properties of the Coulomb 3D kernel running with
large gridbox on GeForce GTX 750 and with small gridbox on GeForce GTX 1070. The x-axis shows a tuning
parameter changing thread coarsening. The y-axis shows normalized values of selected properties: kernel runtime,
L2 cache read transactions, texture cache read transactions and 32-bit floating-point operations.
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Searching tuning space

Main idea behind the searcher

relation between tuning parameters and performance counters
measuring amount of operations remains stable – can be
captured by ML model

relation between tuning parameters and performance counters
measuring stress of GPU subsystems depend on GPU and
input – can be observed during tuning and used to identify
bottlenecks

an expert system asks ML model which tuning parameters to
change to supress bottlenecks

mimics what programmers are doing

they profile the code to observe bottlenecks, and use their
understanding of the code to introduce changes supressing the
bottlenecks

Jǐŕı Filipovič et al. Autotuning
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Searching tuning space

Figure: Schematic view of the searcher workflow. The boxes show
program components, cylinders show data objects.
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Searching tuning space
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Figure: Convergence of the GEMM benchmark using KTT and Kernel
Tuner. Left: convergence speed in time. Right: comparison of iterations
(empirical tests).
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Tuning budget estimation

Tuning budget estimation

the problem: as autotuning itself requires computational
resources, it is also subject of optimization

therefore, estimating when to stop autotuning is crucial, as it
balances

overhead of tuning process (number of tuning steps × average
time of tuned kernel with re-compilation)
expected improvement of speed of tuned kernel

we shown it is possible to guess from historical data and
regression of tuning searching convergence [4]

[4] Jaroslav Ol’ha et al. “Estimating resource budgets to ensure autotuning efficiency”. In: Available at
SSRN 4661862 (2024)

Jǐŕı Filipovič et al. Autotuning



Introduction Kernel Tuning Toolkit Evaluation Related Research

Tuning budget estimation

Figure: Example of tuning space searcher convergence.
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Tuning budget estimation

Figure: Example of tuning cost.
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Tuning budget estimation

Figure: Example of total runtime depending on performed tuning steps.
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KTT interoperability

KTT can be connected with different frameworks

programming heterogeneous nodes is generaly challenging:
distribution of work among multiple accelerators and CPU,
data distribution

StarPU implements task-based parallelism, it executes DAG of
data-dependent tasks on heterogeneous nodes

alternative implementation of tasks
StarPU schedules data movement and task execution across
the node

connection of KTT and StarPU makes tasks tunable [7]

tuning transparent to user
decoples codes of domain and HPC experts

[7] D. Sťrelák et al. “Umpalumpa: a framework for efficient execution of complex image processing workloads
on heterogeneous nodes”. In: Computing (2023), pp. 1–29
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Future work

Still many interesting topics untouched

autotuning for energy efficiency

optimizing optimization spaces

high-level programming of autotuned code

non-trivial applications

Jǐŕı Filipovič et al. Autotuning
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