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Visualization of Molecules

Several methods are able to visualize molecules on atomic level

▶ X-ray diffraction

▶ nuclear magnetic resonance (NMR)

▶ cryo-electron microscopy (cryo-EM)

Cryo-EM has some superiority over other methods

▶ catches molecules in natural environment (diffraction needs
crystalization)

▶ usable for large molecules (NMR is restricted to smaller proteins)
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Cryo-electron microscopy

Rapidly-developed recently

▶ in 2012, there was only four structures at near-atomic resolution

▶ in 2015, 115 structures was discovered

▶ this progress is allowed by direct electron detectors, viterious ice and
image reconstruction methods

In 2017, Nobel price in chemistry was given for cryo-EM

▶ Jacques Dubochet, Joachim Frank, Richard Henderson

▶ Joachim Frank got his price for image processing methods allowing
to obtain 3D structure from electron microscope data
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Cryo-electron microscopy
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Illustration: ©Martin Högbom/The Royal Swedish Academy of Sciences 
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The workflow
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Specimens in the Ice
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Image Analysis in Cryo-EM

Reconstruction of 3D volume is challenging

▶ electron beam causes damages, so it must be weak, so a
noise-to-signal distance is very low

▶ surrounding water adds another source of noise

▶ specimens are captured in random positions, possibly with
conformational changes

▶ when captured multiple times, the image is moving and deforming
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Raw data from microscope
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Image of Specimens
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Aligning Images
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Introduction
3D Reconstruction

Evaluation
Conclusion

Lessons Learned

Introduction
Image Reconstruction

3D Volume Reconstruction
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Our Focus

Image reconstruction is very computationally-demanding

▶ requires thousands of CPU hours at least

▶ 3D reconstruction is one of main bottlenecks

We focus on acceleration of 3D volume reconstruction in Xmipp software

▶ software developed in Spanish National Center for Biotechnology
(CNB-CSIC)

▶ production use, not a prototype-toy
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Getting 3D Volume from Images?

Central slice theorem

▶ let i be real-space projection image, which has concentrated
information about 3D volume v

▶ let I be a Fourier transform of image i and V be Fourier transform
of v

▶ I forms a slice of V with the same orientation as i holds with
respect to v , moreover, slice I is going through center of V

So, we need to transform our images into Fourier space, create 3D
Fourier volume and transform the volume back to real space.
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3D Volume Reconstruction
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3D Volume Reconstruction

We need to guess orientation of each 2D image

▶ computed iteratively

▶ bottleneck is creating 3D volume from 2D images

We have accelerated the creation of 3D volume on GPUs.
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State-of-the-art

Multiple papers deal with GPU acceleration of 3D reconstruction, all
implementing a scatter method
▶ GPU threads are associated to 2D pixels of the image
▶ each thread computes projection of the pixel into volume (resulting

in floating-point position)
▶ the pixel value is put into multiple voxels (integer position) using

interpolation
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State-of-the-art

Drawbacks of scatter pattern

▶ race conditions in writing (distances within a voxel up to
√
3×

longer than distance between two pixels), requires atomic writes

▶ some wrong optimizations removing atomics have been published

▶ frequent writing into 3D domain with poor spatial locality
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The Gather Pattern

The image value is computed for each 3D voxel

▶ so each voxel is written only once
▶ no race conditions in reading

▶ image data are interpolated (we obtain floating-point position in the
image), so they are accessed multiple times
▶ much better memory locality (we are now repeating accesses into 2D

image, not 3D volume)
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The Gather Pattern

Projecting 3D voxels to 2D image

▶ when going into image space, we get position in the image and
z-distance from the image

▶ a lot of voxels do not hit the image (z-distance is too high, or they
are out of image boundaries)
▶ we have O(n2) pixels, but O(n3) voxels – a lot of them is not used
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The Gather Pattern

Projection planes optimization

▶ we look at the image from some plane orthogonal to coordinate axes
(XY, XZ, YZ), which maximizes projected image size

▶ the iteration space is reduced to the projection plane

▶ for each point of the projection plane, we compute the distance of
the image and start to process voxels from there
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Basic GPU Implementation

The gather pattern can be rewritten for GPU directly

▶ one GPU thread is assigned to one point of projection plane

Optimization opportunities

▶ the advanced interpolation method may be computationally
demanding

▶ GPU cache system is limited in maintaining data locality
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Interpolation

Our computation is a kind of stencil, but with floating-point positions

▶ interpolation coefficients cannot be precomputed easily
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Interpolation

We have implemented two strategies

▶ on-the-fly interpolation

▶ precomputed table for very fine steps (originally in Xmipp)
▶ can be cached or preloaded into shared memory
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Explicit Caching of Image Data

A thread block accesses only a part of the image

▶ can be cached in fast shared memory

▶ however, its size may vary depending on image rotation
▶ we upper-bound image size to ⌈

√
2
√
3(b + 2i)⌉, where b is thread

block size and i is interpolation radius
▶ shared memory is allocated to upper-bound prior GPU kernel

execution

▶ for each image, AABB is computed and proper size is preloaded in
shared memory
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Additional Optimizations

Register consumption optimization

▶ many parameters into templates or macros

▶ allows to increase GPU parallelism

CPU-GPU load balancing

▶ CPU prepares images for GPU, one core is not powerful to do so

▶ multiple threads are preparing images and sharing GPU time, also
allows copy and computation overlay
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Architecture

Obrázek: Architecture of 3D Fourier Reconstruction.
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Autotuning

parameter values

BLOCK DIM 8, 12, 16, 20, 24, 28, 32
ATOMICS 0, 1
GRID DIM Z 1, 4, 8, 16
PRECOMP INT 0, 1
SHARED INT 0, 1
SHARED IMG 0, 1
TILE SIZE 1, 2, 4, 8
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Evaluation

Tested on a GPGPU cluster node

Processor performance memory BW
2× Xeon E5-2650 v4 845GFlops 154GB/s
1× Tesla P100 9,519TFlops 732GB/s
4× Tesla P100 38,076TFlops 2928GB/s
theoretical speedup (1 GPU) 11.3× 4.75×
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execution time speedup over original

2× CPU 155m n/a
1× GPU 13m35s 11.4×
4× GPU 4m53s 31.7×
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Performance Portability

Tabulka: Performance portability of 3D Fourier Reconstruction

P100 GTX1070 GTX750 GTX680
Tesla P100 100% 95% 44% 96%
GTX 1070 88% 100% 31% 50%
GTX 750 65% 67% 100% 94%
GTX 680 71% 72% 71% 100%

We can gain over 3× speedup when tuning for each GPU architecture.
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Performance Portability

Tabulka: Sensitivity on input images in 3D Fourier Reconstruction (GTX 1070)

128x128 91x91 64x64 50x50 32x32
128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

We can gain over 3× speedup when tuning for specific input size.
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Conclusion

We have implemented fast, production-ready algorithm

▶ significant performance boost

▶ implemented in Xmipp from beginning

Advantages over state-of-the-art

▶ gather approach is already significantly faster (about 2x on Pascal
architecture)

▶ we suppose it will be even faster with further architectures (bigger
flops-to-memory gap, higher parallelism)

▶ we do not rely on HW implementation of atomics (negligible
slowdown when e.g. result is stored in double-precision)
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Programming Complexity

The basic idea of the algorithm is pretty simple

▶ we are just putting 2D slices into 3D space, right?

Indexing hell

▶ Fourier space is symmetric, we need to deal with its boundaries

▶ going from 3D integer position to 2D real position with handling of
3D symmetry, 2D symmetry and space padding in both 3D and 2D
is challenging

▶ because of real position, it is not always clear if we compute
correctly (e.g. how to trace boundary conditions?)

▶ the indexed space is extremely large

▶ gnuplot seems really good tool
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Debuging with gnuplot
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Finding Bugs

It is not simple to determine what is a bug in noisy data

▶ just by moving from scatter to gather, we already compute
something else

Errors in some part of pipeline are difficult to interpret

▶ e.g., bad indexing in Fourier space looks really weird in real space

▶ too long chain: 2D real → 2D Fourier → 3D Fourier → 3D real
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Sphere
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Sphere with Indexing Bug
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