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Lecture 7: Multivariate data visualization 

 

We refer to multivariate (or high-dimensional) data as data that consists of different types of 

attributes. As an example, we can mention a data set, which is created by collecting 

information about the weight w, height h and number of shoes from a random sample of 

people. Then the triplets (w1, h1, s1), (w2, h2, s2)… are an example of a multivariate data set 

(or multivariate data). 

In this lecture, we will deal with techniques for visualizing high-dimensional data that 

generally does not have explicit spatial attributes.  

Among other examples of this type of data belongs the MNIST dataset that consists of 

10,000 hand-written digits.  

 

Each image containing one digit has size of 28x28 pixels. This leads to the 784-dimensional 

feature vector, where each dimension stands of one intensity value in the image.  

 

The goal of the analysis of this dataset is to automatically determine the digit on a particular 

image. This consists of the task to classify the dataset into bins according to the number on 

the image. And for this, we can use techniques for the analysis and visualization of high-

dimensional datasets. 

Another typical example is the gene expression dataset. In this case, genes are representing 

dimensions and experiments are individual samples. This technique measures the expression 

of genes in different experimental settings (conditions, species). This often results in few 

samples but many genes.  



 

 

Curse of Dimensionality 

Multidimensional datasets and their exploration suffer from several problems, tightly related 

to the dimensionality. The efficiency of many algorithms tailored to the exploration of such 

datasets depends on the number of dimensions these datasets possess. Another problem is 

that, very often, when the number of dimensions is increasing, the data itself becomes 

sparse, i.e., the values in many dimensions are missing. Also, when we are using these 

datasets for machine learning algorithms for automatic information retrieval, the number of 

training samples is exponentially growing with the increasing number of dimensions. 

Visualization aims to address these issues by providing the users with visual insight into the 

outcomes of these algorithms. Visualization aids namely in the tasks related to the visual 

exploration of high-dimensional data, such as detecting clusters, finding regularities and 

irregularities, or identifying relevant data dimensions. Visualization then enables the visual 

inspection of the classification results. In consequence, this should enable us to better 

understand and assess the quality of the outcomes of given algorithms.  

In the following, we will be often operating with the exemplary Iris dataset that is quite 

often used for demonstrating the capabilities of the multidimensional visualization 

techniques. It consists of 3 different iris species and contains 50 samples for each of them. 

There are four measured features: length and width of sepals and petals. 

  

 

 

 

 

Now we will be presenting a set of techniques that are typically used for the visualization of 

multidimensional data. We will start with the line-based techniques. 

Methods for visualizing point data represented each record using a marker. Line-based 

techniques display records by connecting the corresponding points with a straight or curved 

line. These lines not only emphasize the relationships between data values, but also convey 

other perceptible properties through various chamfers, curvatures, crossings, and other 

characteristics of line patterns. 



A line chart is a visualization technique with one variable, in which the vertical axis 

represents a possible range of values of the variables and the horizontal axis represents a 

certain arrangement of records in a given data set. 

Most techniques for displaying a single variable can be extended to multiple variables 

(multivariate data) – using the already known superimposition or juxtaposition techniques. 

For line charts, we can plot data for a reasonable number of dimensions using a common set 

of axes. Other dimensions are distinguished by color, type of drawn line, its width, or other 

graphic attributes (see figure). 

 

When increasing the number of dimensions, or if there is already a large overlap of data, the 

use of the technique of superimpositioning becomes problematic. The following figure at the 

top left shows an 8-dimensional dataset (salaries at faculties for different functions at 100 

different universities). It is obvious that in this classical display using superimpositioning it is 

difficult to know the data. However, some strategies can be used to improve the 

interpretation. The image on the top right is the so-called stacked line chart, where instead 

of using a common basis for plotting, the graph of the previous dimension is used as the 

basis for each additional dimension. 

 

 

 

 

 

 

 



The pictures on the left and bottom right show the use of a different strategy – sorting 

records by one dimension. 

The effectiveness of the above examples depends mostly on the fact that the dimensions 

have common units in the axes. If the individual variables (corresponding to the dimensions) 

have different units, the situation becomes much more complicated. One common approach 

is to use multiple vertical axes, each labeled separately. Another possible approach is to 

create a set of graphs, one for each dimension. We then stack these graphs vertically 

(usually after applying scaling in the vertical dimension so that most graphs can be displayed 

at the same time). 

 

RadViz technique 

Another technique for the visualization of multidimensional data is the force-driven 

technique for distributing points called RadViz. It is based on physics, more precisely on 

Hooke's law, and uses the finding of the equilibrium position of a point for the 

representation. For an N-dimensional data set, N "anchor" points are placed on the 

circumference of the circle, which represent the fixed ends of the N strings assigned to each 

data point. To simplify the calculation and provide an intuitive view of this algorithm, we 

place the anchors on a circle with a radius of 1.0, the center of which is at the beginning of 

the coordinate system. 

Thus, for a given normalized data vector                                           and a set of unit vectors A, 

where Aj represents the j-th anchor point, we get the following equilibrium calculation: 

 

Where p is the vector for the point in equilibrium. The calculation of p is performed 

according to the formula: 
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Note that different placement and arrangement of anchors leads to different results, and 

that points that are different in N dimensions can be mapped to the same location in 2D. 

However, this is a problem with all projection and dimension reduction techniques. In the 

case of RadViz, a simple solution is to enable interaction, such as allowing movement with 

anchors and observing changes in visualization. In this way, it is often possible to trace 

relationships in the data, as shown in the following figure. 

 

 

 

 

The figures show different views of the same dataset displayed by the RadViz technique. The 

figures show the results after manually rearranging the individual dimensions (by moving the 

anchors). In addition, cars are painted according to their price. The goal is to find the 

attributes of cars that best predict which price category a car will fall into based on the given 

attributes. 

It is necessary to keep in mind that this is a lossy transformation. 

 

Other radial-based techniques 

For each technique that has a coordinate system oriented horizontally and / or vertically, 

there is an equivalent technique using radial orientation. For example, a radial line chart is a 

chart where the drawn lines represent the offset from the circular base (see figure). 

 

A large graph can be transformed by dividing it into equal segments and mapping each 

segment to a base with a different radius. This is especially useful for studying cyclical 

events. Individual variants of pie charts also include radar and star charts.  

 



In addition to these popular techniques, the number of other radial-based charts have been 

developed, such as: 

- Polar charts - graphs showing polar coordinates 

 

- Radial stacked bar charts - similar to radial line charts, only bars are displayed instead of 

lines 

  

- Radial area charts - similar to line charts, the area below the lines is additionally filled with 

color or texture 

- Radial bar charts - columns are represented by circular arcs with a common center. The 

difference between a pie chart and a graph is that in one the bar is straight, and the base is 

curved, while in the other it is exactly the opposite.  

 

 

 

All techniques using radial axes and involving more than one circle use either concentric 

circles or a continuous spiral. The following figure is given as an example of a bar graph with 

a spiral base. 

 

This method, unlike concentric circles, does not show discontinuities at the end of each 

cycle. The comparison within and between cycles is relatively simple, especially when the 

columns are oriented along a vertical axis (as in the figure) instead of a perpendicular 

orientation to the spiral. 

Thanks to the knowledge of human perception, we know that in this case it is more difficult 

to measure the difference between adjacent elements than when using a common base 

(traditional bar graph). However, the traditional column expression does not allow us to 

simply follow the patterns between the individual elements in the same position in different 

cycles. 



Techniques for area data 

For area data techniques, filled polygons of a given size, shape, color, and other attributes 

are used to display values. Although we know from human perception errors that our ability 

to accurately interpret an area is inferior to our ability to measure other attributes, such as 

length, several very effective techniques have been developed to display data in this 

category. The goal of some of these techniques is not to show the raw data themselves, but 

their clusters or distributions of values. 

Many of these techniques for visualizing area data were originally designed for univariate 

data, but some of them have been expanded by more dimensions. We will now introduce 

some of these methods. 

Stacked bar charts 

If we display multivariate data, we have several options for using bar charts. A common 

technique is a layered bar graph, where each column consists of several shorter columns 

representing the values in each dimension. Color, texture, and others are commonly used to 

distinguish them (see the picture on the left). 

 

 

 

 

 

A similar approach shows columns for individual variables right next to each other (see 

figure on the right). The columns therefore have a common base, which simplifies their 

interpretation. 

The choice between these two approaches often depends on the number of variables and 

the number of columns. Stacked columns do not require additional horizontal space 

requirements, while the second technique of "adjacent" columns may require much more 

space in this direction. 

Tabular visualizations 

Multivariate data is often stored in tables, so several visualization techniques have been 

developed that work with these structures. These techniques usually differ in the type of 

interactions they support. One example is the so-called heatmaps. They are created by 

displaying a table of records using color instead of text. In this visualization technique, all 

data values are mapped to the same normalized color space, and each value is rendered as a 



colored square or rectangle. The use of different color maps, along with allowing the user to 

expand or reduce colors to emphasize or suppress certain ranges of values, significantly 

increases the applicability of this technique. 

 

 

 

 

 

Permutations or refoldable grids are basically heatmaps that allow you to reorganize rows 

and columns to reveal certain data properties. Columns and rows can be reorganized to 

maximize diagonalization - creating a matrix with cells aligned along the main diagonal. 

Other variants rearrange the data to isolate clusters with similar values or patterns in the 

data values. 

Another technique is the so-called survey plots. They are a variant of the permutation 

matrix, where instead of staining the cells, we work with their size. In addition, we align the 

centers of the cells to the individual attributes. This alleviates color perception errors caused 

by various side effects of neighboring colors. 

 

However, because area measurement is much more error prone than length measurement, 

this method also has its errors. 

The figure shows a survey plot calculated using the DataLab tool. Each column is a visual 

representation of one of the four dimensions of the iris dataset. 

 

Dimensional stacking 

The technique of folding dimensions was developed by LeBlanc et al. and aims to map data 

from discrete N-dimensional space to a 2D image in such a way as to minimize data 

occlusion while preserving most of the spatial information. 



Briefly, the mapping is performed as follows: 

• We start with data of dimension 2N + 1 (for an even number of dimensions it is 

necessary to supply an additional default dimension of cardinality 1). 

• Select the final cardinality for each dimension. 

• Select one of the dimensions as a dependent variable. The rest are considered 

independent variables. 

• Now we create ordered pairs of independent variables (N pairs) and assign each pair 

its unique value (called velocity) from 1 to N. The pair corresponding to velocity 1 

creates a virtual image whose size corresponds to the cardinality of dimensions (the 

first dimension of the pair is oriented horizontally, second vertically). At each position 

of this virtual image, another virtual image is created that corresponds to the 

dimensions of velocity 2. Again, the size of this image depends on the cardinality of 

the corresponding dimensions. This process is repeated until all dimensions are 

included. In this way, we achieve that each location in a space with many dimensions 

has its own unique location in the 2D image that results from the mapping. 

The value of the dependent variable at a given location in a multidimensional space is then 

mapped to the color / intensity of that location in the 2D image. The whole process is 

illustrated by a picture. A 6-dimensional data set is shown, where dimensions d_1 to d_6 

have cardinalities 4, 5, 2, 3, 3, and 6. 

 

In other words, this technique works as follows. It starts by discretizing the ranges in each 

dimension. Each dimension is then assigned an orientation and arrangement. The 

dimensions with the two lowest configurations are used to divide the virtual screen into 

sections, with the cardinality of the dimensions determining how many sections in the 

horizontal and vertical axes are generated. The next section created in this way is used to 

recursively define the virtual screen in the other two dimensions in the same way. This 

process is repeated until all dimensions have been processed and the data has been placed 

at its position on the screen. 

As an example, let's take 4D data visualized by dimensional stacking. 



 

The composition of dimensions can be displayed using an N-dimensional histogram if the 

color of the cell is set in proportion to the data values that are mapped to it. 

Worlds-within-worlds methods or treemaps are based on a similar principle, which we will 

discuss in future lectures. 

 

Other techniques 

Glyphs and icons 

In the context of data and information visualization, a glyph is a visual representation of a 

piece of data or information where the graphic entity and its attributes are controlled by one 

or more attributes of the input data. For example, the width and height of a block can be 

controlled by the student's results in the semester and at the end of the year, while color 

can be associated with the student's gender. 

The definition is very general because it includes glyphs used in scatterplots, histogram 

columns, or even entire lines in a graph. 

Many authors have developed lists of graphical attributes to which data values can be 

mapped. These include position (1D, 2D, 3D), size (length, area, volume), shape, orientation, 

material (brightness, saturation, intensity, texture, transparency), line style (width, dashes, 

convergence) and dynamics (speed of motion, direction of motion, blinking rate). 

We will now list a number of possible mappings to different types of glyphs, including: 

• 1: 1 mapping, where each data attribute is mapped to unique and different graphical 

attributes 

• 1: many mapping where a set of redundant mappings is used to achieve greater 

accuracy and simplicity of interpretation 



• Many to many mapping where several or all data attributes are mapped to a 

common type of graphical attribute, separated in space, orientation, or other type of 

transformation 

1: 1 mapping is often designed to take advantage of user knowledge - using intuitive data 

pairing to graphical attributes to simplify the comprehension process. Examples include 

mapping color to temperature or mapping flow direction to line orientation. 

Redundant mapping can be useful in situations where the number of dimensions of input 

data is low, and the goal is to minimize the possibility of misinterpretation. An example is the 

mapping of a population to size and color at the same time, which will make the analysis 

accessible to people with color perception disorders, and in addition we will refine the 

comparison of two populations with similar values. 

1 : many mappings are most advantageous in situations where it is important not only to 

compare the values of different records in the same dimension, but also to compare 

different dimensions of the same record. An example is mapping each dimension to the 

height of a vertical column to allow both comparisons inside and between records. 

The following list contains a subset of glyphs that have been designed in various studies and 

are commonly used. Some are designed specifically for certain applications, such as flow 

visualization, while others are general. 

- Profiles - height and color of columns 

- Star-shaped glyphs - the length of evenly spaced rays emanating from the center 

- Metroglyphs - length of rays 

- "Stick" images - length, angle, and color of branches 

- Trees - length, thickness, angles, and branches; the structure of the branches is derived 

from the analysis of the relationships between the dimensions 

- Autoglyphs - color of cubes 

- Blocks - height, width, depth of the first block + height of the following blocks 

- Hedgehogs - "thorns" of a vector field with different orientation, thickness, and taper 

- Faces - size and position of eyes, nose, mouth, curvature of mouth, angle of eyebrows 

- Arrows - length, width, taper, base line color and the arrows themselves 

- Polygons - highlighting local deformations in a vector field using changes in orientation and 

shape 

- Dashtubes - texture and transparency for displaying vector field data 



- Weathervanes 

- Circular profiles - distance from the center to the vertices at the same angles 

- Colored glyphs - colored lines across the cube 

- Bugs (beetles) - the shape of the wings controlled over time, the length of the antennae, 

the size and color of the body, the size of the marks on the body 

- Wheels - The 3D wheel maps time to height, the value of the variable to radius 

- Boids - the shape and orientation of primitives moving in a time-varying field 

- Procedural shapes - "blobby" objects controlled by up to 14 dimensions 

- Glyphmaker - user controlled mapping 

- Icon Modeling Language - attributes of a 2D contour and parameters that extract it into 3D 

and further transform or deform it 

 

When using glyphs in the field of information visualization, we must be aware of a number 

of inaccuracies and limitations of this technique. The most important are the inaccuracies in 

perception, which depend on what graphic attributes we used. Some attributes, such as line 

length, can be judged much more accurately than others, such as orientation or color. 

Other sources of inaccuracy stem from, for example, the fact that relationships between 

adjacent graphical attributes are much better interpreted than those that are at a greater 

distance. A comparison of two glyphs works in a similar way. If they are placed close to each 

other on the screen, they are easier to compare than when they are at a greater distance. 

Finally, the number of data and record dimensions that can be efficiently displayed using 

glyphs is limited. 



If we have already selected the type of glyph we want to use, there is N! different 

dimensional arrangements that can be used in mapping. There are several strategies for 

choosing the right layout: 

• Dimensions can be sorted based on their correlation - similar dimensions are mapped 

to adjacent values. This helps to reveal general trends in the data. 

• Dimensions can be mapped in such a way that we increase the influence of glyphs 

with a symmetrical shape, which are easier to perceive and remember. Shapes that 

are less symmetrical than their neighbors also dominate. 

• Dimensions can be sorted according to their values in one record. For example, if the 

data contains multivariate time slots, then sorting based on the first record can 

highlight trends over time, seeing which relationships between dimensions are 

permanent or, conversely, change significantly over time. 

• Dimensions can be sorted manually based on the user's knowledge of the domain. 

Semantically similar dimensions can be clustered to simplify interpretation. 

The last important consideration when designing a glyph visualization is the placement of 

the glyphs on the screen. There are three basic types of deployment strategies: 

1. Uniform 

2. Controlled data 

3. Structured controlled 

 

Uniform placement 

Glyphs are scaled and distributed evenly across the screen (same gaps between glyphs). This 

strategy eliminates overlaps while making efficient use of screen space. Different record 

classifications reveal different data properties (see figure). 

 

 



Data-driven placement 

Data values are used to control glyph placement. There are two possible approaches. In the 

first, two (three for 3D viewing) dimensions are selected that control the deployment. In the 

second approach, positions are derived using algorithms such as PCA and MDS. 

 

 

 

 

 

Structure-driven placement 

If the data has an implicit or explicit structure, such as a cyclic or hierarchical one, this 

information can be used to control the distribution of the data. For example, glyphs can be 

arranged in a spiral or grid. 

 

 

 

 

 

Dense Pixel Displays 

Dense pixel displays, also known as pixel-oriented techniques, are a hybrid method at the 

interface of point and regional (area) methods. The technique was developed by Keim and 

his colleagues and maps each value to individual pixels and creates a filled polygon for each 

dimension. These display types make the most of screen space, allowing millions of values to 

be displayed on a single screen. Each data value controls the color of one pixel - by changing 

the color map used, we can potentially reveal new data properties. Given the input data set 

and color map, it is still necessary to resolve the layout of data records and their 

arrangement. 

In its simplest form, each dimension of a dataset generates a separate "subpicture" on the 

screen. Thus, we can consider each dimension as an independent set of numbers, each 

controlling the color of the corresponding pixels. Then it is necessary to arrange the 

elements in these sets in such a way that we emphasize the relationships between points 



that are close to each other in the set. For example, we create a subpicture, where we 

alternate the passage from left to right and from right to left, and if we reach the edge of the 

subpicture, we move one row lower. 

Another option is to use a spiral layout, where the first data point is placed in the center of 

the subpicture and the subsequent points are arranged in concentric squares. 

There are a number of different ways to deploy, some of which are shown in the pictures. 

 

 

 

 

Subpictures corresponding to the data for each dimension can be placed on the screen in 

different ways. The easiest way is to create a grid of sub-images that maximizes screen 

usage. Grids can have different configurations based on the arrangement of dimensions, 

which makes it possible to reveal correlations between dimensions. A technique called 

recursive patterns uses a grid pattern of subpictures. 

Another variant is the so-called circle segments, where instead of placing the pixels in 

rectangular subpictures, we place the pixels in circular "wedges". We start in the middle of 

the circle and intertwine back and forth from the center. Each dimension occupies the Nth 

arc of a circle, where N is the number of dimensions. 

 

 

 

 

 

The last important topic in the design of pixel-oriented displays is the arrangement of data. 

For some types of data, such as time sequences, the arrangement is predetermined and 

fixed. However, in other cases, reordering records can reveal many interesting features. For 

example, if the data is organized based on one of the dimensions, clusters of values appear 

in that dimension. The same is true for other dimensions. 

Another possible approach is to arrange the records based on their N-dimensional distance 

from the selected point. 



The figure shows the same data, which differs in the arrangement of the records. 

 

 

 

 

 

 

Pixel bar charts 

Dense pixels can also be placed in a standard bar chart. To make efficient use of screen 

space, pixel bar diagrams often use the width of the column instead of its height to 

represent aggregated data parameters. In addition, the columns are colored pixel by pixel so 

that we can display detailed information about the individual values of the data aggregated 

in the columns. 

• Classic bar chart overload - include more information about individual elements 

 

• Each pixel of a column corresponds to a data point belonging to the group 

represented by that column 

 

 



The example shows the relationship between product type and price. The color is mapped 

to: 

a) Amount spent 

b) Number of visits 

c) Sales volume 

The next image shows several pixel bar charts that use the same pixel arrangement inside 

the columns (broken down by month, sorted on the y-axis by number of purchases, and on 

the x-axis by number of visits). Visualization allows the user to observe interesting facts 

about transactions, such as: 

- In December there was the largest number of customers, while in February, March and 

May there were the fewest 

- From February to May was the largest number of purchases 

- The number of purchases in December is average 

- From March to June, customers returned more often than in other months. December 

customers were mostly one-time. 

- Customers who buy the most return more often and buy more things. 

 

 

Scatterplots 

One of the most used visual representations of the multidimensional datasets are 

scatterplots. In this context, scatterplots can be thought of as a type of visualization that 

projects records from n-dimensional data space into any k-dimensional space of the output 

device (e.g., display), where data records are mapped to k-dimensional points. Each record is 

associated with a specific graphical representation (tag). Scatterplots can display individual 

records or summary records and can be structured based on the use of various projection 

techniques. 



We have already encountered scatterplots several times, mainly because scatterplots are 

one of the first and most widespread visualization techniques used in data analysis. Most 

information analysis tools and packages contain some form of 2D and 3D scatterplots. Their 

success stems from our natural ability to estimate relative positions within a limited space. 

With the increasing dimensionality of the input data, the visual analysis consists of: 

- Multiple displays - display of several graphs, each displaying some of the dimensions 

(display using superimposition or juxtaposition). 

- Dimension subsetting, where we allow the user to select only a certain subset of input 

dimensions to be displayed. When searching for a suitable subset of dimensions, we can use 

algorithms to search for dimensions that contain the most useful information for a given 

task. 

- Dimension reduction - using techniques such as PCA (principal component analysis) or 

multidimensional scaling, which allow you to transform data on higher dimensions into data 

on lower dimensions, while trying to preserve as many of the original relationships between 

data points. 

- Dimension embedding - mapping of dimensions to other graphic attributes in addition to 

position, such as color, size, and shape (of course, the number of dimensions that can be 

displayed in this way is limited). 

Withing this lecture, we will be discussing these approaches in more detail. 

  

Multiple displays 

In the case of displaying several graphs showing different dimensions of the displayed data 

(multiple display), the most frequently used technique is the so-called scatterplot matrix. It 

consists of a grid containing scatterplots that has N2 cells, where N is the number of 

dimensions. Therefore, each pair of dimensions is drawn twice – it differs only by rotating 

the graph by 90 degrees. The arrangement of the dimensions is usually the same in the 

horizontal and vertical axes, which leads to the symmetry of the matrix along the main 

diagonal. Graphs on the main diagonal, which should show a variable in a given dimension 

with itself, are often used to communicate dimension information in the corresponding row 

/ column or to plot a histogram of that dimension. 



 

Among other possible representations belong, for example, parallel coordinates or Chernoff 

faces.  

 

However, all these techniques are suffering from the scalability problem regarding the 

number of data items that can be comprehensively displayed. This problem can be partially 

solved by using different techniques, such as density-based visualizations, random sampling 

of data items, or edge bundling.  

 

 

 

 

 



However, another possible problem is the number of dimensions in the dataset, that cannot 

be solved by these techniques. In the following, we will be discussing potential solutions of 

this problem. 

Feature selection (dimension subsetting) 

These techniques are based on selecting a subset of existing features of the dataset without 

any transformation. On other words, we are not applying any algorithm for dimension 

reduction, instead we are exploring only a selected subset of the original features. For these 

tasks, we are utilizing the multidimensional data visualization techniques that we’ve already 

seen or others, such as ranking techniques. These are ranking individual dimensions or 

dimension pairs based on a quality metric. Among typical quality metrics belong, for 

example, the number of outliers, correlation between the pairs of dimensions, image-based 

descriptors, etc. These quality metrics can be combined as well. 

An example of the ranking approach is the following framework for the exploratory analysis 

of multidimensional data. It supports 1D and 2D ranking criteria: 

1D criteria are the normality or uniformity (entropy) of distribution, the number of potential 

outliers, and the number of unique values. 

 

Here the individual views are interactively linked, and the histogram is ordered according to 

current ranking criteria. 

2D criteria are the correlation coefficient, the least squares error for linear regression or 

curvilinear regression, the number of items in the region of interest, and the uniformity of 

scatterplots. 

 

 



Another typical example of the feature selection technique is an approach to solving the 

problem of the selection and ordering of parallel coordinate axes. Here a possible approach 

would be to convert every dimension pair to the Hough space. 

The main idea of the Hough transform is to define a straight line according to its parameters, 

i.e., the slope a, and the interception b. The image shows two examples of parallel 

coordinates and their respective Hough spaces. The left image presents two well defined line 

clusters and is more interesting for the cluster identification task than the right image, where 

no line cluster can be identified.  

The application of this method can be demonstrated on the following example showing the 

dataset of cars. It consists of 7,404 cars, each having 24 attributes. The following image 

shows results of two rankings, where the criterion was the benzine (black) and diesel (red) 

engine. 

 

 

 

 

 



Feature extraction (dimension reduction) 

These techniques are actually transforming the existing features into lower dimensional 

space that is then displayed and explored by the user. For that, we can use the traditional 

and mostly already mentioned 1D / 2D /3D / nD visualization techniques.  

The techniques for dimension reduction can be divided into two main categories – linear and 

non-linear projections. 

Linear projections 

These techniques are based on the linear transformation that projects the data from high-

dimensional space to the low-dimensional space. The typical representatives of this type of 

projections are the Principal Component Analysis (PCA) or Multi-Dimensional Scaling (MDS).  

PCA is projecting the data to the lower dimensions – so called principal components. The 

first principal component aims to capture as much variability of the data as possible. The 

other principal components are orthogonal to the principal one.  

 

MDS belongs to the so-called force-based methods. MDS actually represents a large set of 

dimension reduction algorithms that are commonly used in statistical analysis and 

information visualization. The main goal is to try to preserve the properties of N-dimensional 

data when projecting into another dimension (e.g., the relationships existing between the 

data in the original dimensions should be preserved even after the projection). The 

projection may introduce certain artifacts that may appear in the resulting visualization and 

were not included in the original data at all. 

A typical MDS algorithm has the following structure: 

1. Let us have a dataset with M records and N dimensions. We create an MxM matrix Ds 

containing the results of measuring the similarity between individual pairs of input data. This 



measurement can be performed in various ways, for example using Euclidean distance 

metrics. 

2. Suppose we want to project the input data into K dimensions (for display purposes, K is 

usually between 1 and 3). We construct a matrix L with dimensions MxK, which contains the 

location of the projected points. These M locations may be chosen at random or a technique 

such as principal component analysis may be used. 

3. Calculate the matrix Ls with dimensions MxM, which contains the similarity between all 

pairs of points from L. 

4. Calculate the value of the so-called stress - S, which is determined by measuring the 

differences between Ds and Ls. 

5. If S is small enough or has not changed significantly in the last few iterations, the 

algorithm ends. 

6. Otherwise, we shift the positions of the points in L in a direction that reduces their 

individual stress values. This can be, for example, a weighted sum of the displacements 

based on a point comparison with all other points or only with the nearest neighbors. 

7. Return to step 3. 

Obviously, there are several variants of this algorithm. Their difference lies mainly in the way 

of calculating the similarity and value of stress, in the different definition of initial and final 

conditions and in the different strategy of updating the position of points. As with other 

optimization algorithms, it may happen that we can get stuck in the local minimum, which, 

however, still has a high value of stress. Common strategies that address this problem 

occasionally add a random "jump" to a given point position where the goal is to converge to 

another location. 

The figure shows an example of an iris dataset showing the four numerical dimensions 

where the MDS technique was used for projection. 

 



 

Problems: 

For most of the techniques we present in this section, the results are not unique: small 

changes in the initial conditions can lead to completely different results. Another problem is 

that the coordinate system after projection is not completely "meaningful" for the user - due 

to the dimensions of the original data. For example, it is typical to map a data point to a 

position at the top of the display when one algorithm is running, and to map a data point to 

a position at the bottom of the display when running another algorithm that solves the same 

problem. Therefore, the relative position of the individual points is important, not absolute. 

 

Non-linear projections 

In these techniques, the low-dimensional surface is embedded non-linearly in the high-

dimensional space. The outcomes of these methods can possess different shapes (one of the 

typical is the spiraling band or the Swiss roll – see figure). The goal of these methods is to 

preserve the information about the neighborhood between points in the high-dimensional 

space. They are locally linear and are based on the pairwise distances. However, on larger 

distances, the non-linearity causes the problem that we cannot conclude that the distant 

points in the reduced space are also distant in the original space.  

 

In the following, you can see the outcomes of several non-linear DR techniques, such as 

isomaps or locally-linear embedding (LLE). 



 

 

Hybrid approaches 

Dimensionality reduction is often unwanted because the domain knowledge of the user is 

often required to understand which dimension combinations are meaningful. Therefore, it is 

beneficial to combine the user-defined feature selection (based on visual analysis 

approaches using different quality metrics) with subsequent feature extraction, that is 

performed only on the selected dimensions. For the visual representation, we can utilize the 

above-mentioned techniques. 

 


