
PV251 Visualization
Autumn 2024

Study material

Lecture 8: Trees, graphs, networks, text, documents

Trees, graphs, networks

Until now, we have dealt with visualization techniques from the point of view of displaying

data values and their attributes. Now we will look at another important application area of

visualization - providing information about the relationships between data, i.e., how data

items or records relate to each other.

Relationships between data can take several forms:

- Hierarchical relations (section vs. subsection, parent/child, …)

- Connectivity, interconnection (e.g., how cities are connected by roads, how

computers interconnected into a network, …)

- Derivation (for example, a sequence of steps or phases)

- Shared classification

- Similarity between values

- Similarity between attributes (e.g., spatial, temporal, …)

Relationships can be simple or complex: one-directional or bi-directional, unweighted or

weighted, etc. Additionally, relationships between data can provide much more information

than just what is contained directly in the records.

Applications that display relational information can be very different - from categorizing

animal species, through examining a document archive, to monitoring a terrorist network.

In this lecture we will describe a set of techniques for visualizing relational information.

However, our overview will be only a fraction of what exists in this area, as a number of

extensive publications are devoted to the visualization of trees and graphs.

Visualization of hierarchical structures

Hierarchical structures (often referred to simply as "trees") are some of the most common

structures used to store information about the relationships between data. Many

visualization techniques were therefore created to display these structures and preserved

relationships. These techniques and their algorithms can be divided into two classes:

- Space-filling – make maximum use of screen space

- Non-space-filling – maximum use of space of the output device is not their main

criterion

When studying the techniques for displaying hierarchical structures, we will focus on these

two types of algorithms.

Space-filling methods

As the name suggests, these techniques try to make the most use of available screen space.

This is often accompanied using juxtapositioning to display relations. The two most common

approaches to generating this type of hierarchy are rectangular and radial layouts.

Among the most popular forms of space-filling layout belong treemaps and their various

variants. These are an example of a rectangular space layout.

Representatives of the second class, i.e., the radial layout, are, for example, the so-called

"sunburst displays" (in the shape of the sun). Here, the root of the hierarchy is displayed in

the center, and nested ring layers are used to display additional hierarchy layers.

Treemaps

In their basic variant, the rectangle is recursively divided into segments, alternating the

horizontal and vertical division of the rectangle. The division is derived from the population

of subtrees at a given level. As an example, consider the following pseudocode:

Notation:

Width = width of the rectangle

Height = height of the rectangle

Node = root node of the tree

Origin = position of the rectangle (e.g., [0, 0])

Orientation = direction of division – alternating horizontal and vertical

division

treemap (Node n, Orientation o, Position orig, Width w, Height h)

treemap (Node n, Orientation o, Position orig, Width w, Height h)

 if n is leaf node (has no children)

draw_rectangle(orig, w, h);

return;

for each child of node n (child_i) get number of leaf nodes in subtree;

 sum the total number of leaf nodes of n;

 calculate the percentage of leaf nodes in each subtree (percent_i);

 if orientation is horizontal

for each subtree

calculate origin offset based on origin and width (offset_i);

 treemap(child_i, vertical, orig + offset_i, w * percent_i, h);

 else

for each subtree

calculate origin offset based on origin and height (offset_i);

treemap(child_i, horizontal, orig + offset_i, w, h * percent_i);

The following figure shows an example of a visualization of a given hierarchy in the form of a

treemap created using the algorithm described by this pseudocode.

Many variants of treemaps have been developed, such as squarified treemaps (to reduce

long, thin rectangles) or nested treemaps (to enhance the hierarchical structure).

Radial layout

Methods for displaying hierarchy in radial layout, often referred to as "sunburst displays",

have the root of the hierarchy located in the center of the radial display and the individual

layers of the hierarchy are represented by concentric rings. Each ring is divided based on the

number of nodes in a given level of the hierarchy. These techniques use a similar strategy as

treemaps – the number of leaf nodes in a given subtree determines the size of the screen

that allocated for that subtree.

However, while treemaps dedicate most of the screen space to displaying leaf nodes, this

radial layout technique also displays inner nodes. The pseudocode of this algorithm is as

follows:

Notation:

Start = starting node angle (initially 0)

End = end angle of the node (initially 360)

Origin = position of the center of the radial display (e.g., [0, 0])

Level = current level of the hierarchy (initially 0)

Width = thickness of each radial strip - based on the maximum hierarchy

depth and the size of the display

sunburst (Node n, Start st, End en, Level l)

sunburst (Node n, Start st, End en, Level l)

 if n is leaf node (has no children)

draw_radial_section(Origin, st, en, l * Width, (l + 1) * Width);

return;

 for each child of n (child_i) get number of leaf nodes in subtree;

 sum the total number of leaf nodes of n;

 calculate the percentage of leaf nodes in each subtree (percent_i);

 for each subtree

calculate the start / end angle based on the size of the subtrees,

their arrangement, and angle ranges;

sunburst (child_i, st_i, en_i, l + 1);

Using color in hierarchical techniques

For the aforementioned techniques, as well as for other space-filling techniques, color can

be used to highlight many attributes, such as the values of each node (e.g., for classification)

or it can enhance the display of hierarchical relationships (e.g., siblings and their

predecessors can have a similar color/hue, which is observable also in the previous picture).

Other data properties can be communicated, for example, by using symbols and other

markings placed in rectangular or circular segments.

Non-space-filling methods

One of the most common representations of hierarchical relationships are node-link

diagrams. The structure of the organization, family trees, or pairings in tournament matches

are just a few examples of common applications of these diagrams. The appearance of these

trees is most affected by two factors: the degree of branching (the maximum number of

siblings per parent) and the depth (determined by the farthest node from the root).

Different tree types are limited in one or both factors, such as binary trees or trees that

allow only three or four layers.

When designing algorithms for plotting node-link diagrams (not just trees), we must

consider three categories of rules, which are often contradictory:

- Rendering conventions

- Restrictions

- Aesthetics

Conventions can include edges, which can be defined by only one straight line, a set of lines,

polylines, or general curves. Another convention may be to place the nodes in a fixed grid or

to place the siblings in the same vertical position.

Restrictions may include a request to place the node in the center of the screen, a request

to place a group of nodes in close proximity to each other, or a request to orient the lines in

certain direction.

Aesthetics has a significant influence on the interpretation of a given tree or graph in

general. Some typical aesthetic rules include:

- Minimize line crossing

- Maintain a "reasonable" aspect ratio

- Minimize the total area used for rendering

- Minimize edge length

- Minimization of the number of edge bends

- Minimize the number of different edge angles or curves

- Try to maintain symmetry

For trees, especially the balanced ones, it is relatively easy to design algorithms that comply

with most of these rules. An example of this is the rendering procedure, which we will now

show:

1. Divide the drawing area into horizontal layer of the same height – this division is

derived from the depth of the tree

2. For each level of the tree, determine how many nodes must be drawn

3. Divide each layer into rectangles of the same size – derived from the number of

nodes at a given level

4. Draw each node in the center of the corresponding rectangle

5. Draw a connecting line from the center of the bottom edge of each node to the

center of the top edge of its descendant(s)

This basic algorithm can be enhanced by several optimizations that improve the use of

screen space by moving children closer to their parents. These optimizations include, for

example:

- Instead of evenly dividing the space and centering, each level is divided according

to the number of end nodes belonging to the given subtree.

- Even distribution of end nodes in the space intended for drawing and centering

of their parent nodes.

- Adding additional separating spaces between adjacent nodes that are not

siblings. The goal is to highlight relationships.

- If possible, reorganize the subtrees of nodes to achieve greater symmetry and

balance.

- Place the root node in the center of the screen and radially place the children

around it.

For large trees, a popular approach is to use a third dimension, complete with tools for

rotation, translation, and zooming. Probably the best known of such techniques are the so-

called cone trees. In this layout, the descendants of the node are evenly distributed radially

around the parent and then shifted perpendicularly into a plane.

The two main parameters are the radius and the offset distance – their change affects the

display density and the degree of overlap.

At a minimum, these trees should meet the condition that their separate branches are not

located in the same place in 3D space. One method of achieving this condition is to

determine the radius using the inverse ratio to the depth of the node in the tree. This way,

the nodes near the root are closer to each other.

Displaying arbitrary graphs/networks

Trees are just one type of more general representation of relationships between data, called

graph. The tree is an example of a joint unweighted acyclic graph. Obviously, there are

many different graph variations, such as weighted edge graphs, non-oriented graphs, graphs

containing cycles, disconnected graphs, etc.

Rather than describing the algorithms for these individual types of graphs, we will deal with

the visualization of graphs whose structure is not known in advance. We call them arbitrary

graphs. In our case, we will assume that the graph is unoriented, although most of the

presented techniques can be easily extended to oriented graphs. We will focus on two

different approaches to rendering:

- Node-link diagrams

- Matrix displays

Node-link graphs

The force-directed graphs described in the last lecture use the analogy of springs to

represent links, where the positions of nodes are iteratively adjusted until the value of so-

called stress is minimized (e.g., multidimensional scaling). An example is shown in the figure.

For each pair of connected nodes, two forces are calculated: fij - the force derived from the

string between them, gij - electrical resistance preventing the nodes from getting too close

to each other. A simple model is to use Hooke's law to represent the force fij and the inverse

square law to represent gij. If the Euclidean distance between nodes i and j is denoted as

d(i,j), sij is the length of the string (at rest) and kij is the tension of the string, then the x-

component of the force fij between these nodes is calculated as

If rij denotes the force of resistance between nodes i and j, then the x-component of the

force gij is calculated as:

),(/)(*)),((*)(jidxxsjidkxf jiijijij −−=

),(/)(*)),(/()(2 jidxxjidrxg jiijij −=

Each step of the position adjustment process calculates the sum of all forces for each node

(x, y, and z-components) and shifts the position accordingly in proportion to the resulting

force. Of course, after adjusting the position, we must recalculate all the forces and the

position shifts again. It is necessary to avoid oscillations, so we adjust the force to converge

to the point where the forces are minimized. Starting positions are assigned randomly. It is

likely that the point will end up in a local rather than a global energy minimum. Therefore, it

is common practice to run the algorithm several times in a row with different initial

configurations and then select the best final configuration. The "suitability" of the location

of points in a given layer can be calculated based on the sum of the magnitudes of the

forces in a given configuration.

Planar (planar) graphs

Techniques for plotting 2D graphs are based on the assumption that the basic graph is

planar, i.e., its edges do not intersect. Algorithms for planar graphs are very popular for

many reasons. Firstly, the planar graph theory has a long history, and there are several

studies on the subject. Secondly, edge crossings generally complicate the interpretation of

graphs, so it is advantageous to minimize these crossings, preferably to eliminate them

completely. Finally, planar graphs are often sparse: Euler's theorem for planar graphs says

that at n vertices they can have at most 3n-6 edges.

Limiting oneself to working with planar graphs is not as restrictive as it would seem. This is

because graphs with crossing edges can be converted to a planar graph as follows. We place

dummy nodes at the intersections of the edges, run the algorithm for planar node

positioning, and then remove the false nodes again.

In addition, we will assume that the graph is connected. That means there is a path from

each node to all other nodes. Graphs that are not connected can be divided into subgraphs

that are plotted separately as connected.

A maximal connected subgraph (all nodes are interconnected) is called a connected graph

component.

Other definitions:

- Face – the part of the plane enclosed by a set of connected vertices.

- Neighbor set – a set of vertices that are adjacent to a given node (in counter

clockwise order).

- Planar embedding – a class of planar graph representations with the same

neighbor set for each vertex. A planar graph can have exponentially many such

embeddings.

- Cutvertex – any node which, when removed, makes the graph disconnected.

- Biconnected graph – graph without cutvertices.

- Block - maximum biconnected subgraph of the graph.

- Separating pair – a pair of vertices, the removal of which will cause the

biconnected graph to become disconnected.

- Triconnected graph – graph without separating pairs. The planar triconnected

graph has a unique embedding.

We must first determine the strategy according to which we decide whether the given graph

is planar. There are several algorithms that solve this problem, but the time-efficient ones

are very complex and, conversely, simple algorithms are computationally intensive.

Therefore, we will simplify the problem a bit. We say that a graph is planar if all its

connected components are also planar. Similarly, we can say that a connected graph is

planar only if all biconnected components are planar. Therefore, we only need an algorithm

to determine whether the biconnected graph is planar or not.

The algorithm works as follows. We will use the divide and conquer approach. If our graph

contains a cycle that has no other cycle that does not contain the edge of the original cycle

(in other words, if we remove the edges of the original cycle, no more cycles remain), then

there are paths (called pieces) that begin and end in one of the vertices of this cycle (called

attachments). These arise as follows: Two edges e and e’ belong to the same piece if there is

a path starting at e and ending at e’ that does not contain the vertices of the cycle as its

"inner" vertices.

The piece can be:

- One edge between two cycle vertices

- A continuous graph that contains at least one vertex that does not lie in the cycle

Two such pieces of a graph are "interlaced" if they both begin and end at the nodes of the

cycle, and the two ends of one piece are separated by the end of the other piece. In order to

draw these pieces planarly, one of these pieces must be drawn inside the cycle and the

other outside.

If we now create a graph of all the pieces, where two intersecting pieces are separated by

an edge and such a graph is bipartite (divisible into two sets of vertices in such a way that

there is no edge between members of the set), then the original graph is planar.

The figure shows an example of a biconnected graph. On the right, the cycle is shown in

black, and five pieces are shown in color.

If the graph contains multiple cycles after removing the edges of the original cycle, it means

that one or more pieces contain a cycle (see the pink piece in the figure). In this case, we

create a subgraph containing this piece and the part of the original cycle connecting the

endpoints, and recursively call an algorithm to test the planarity of the graph.

For completeness, we will now introduce the pseudocode of this algorithm. Let's call a

separating cycle a cycle that generates at least two pieces.

Let us consider a biconnected graph G and a separating cycle C.

1. Calculate all pieces of G with respect to C.

2. For each piece P that is not a path (contains a cycle)

a. We create a graph G’ consisting of P and C.

b. We create a cycle C’ consisting of a path through P and a part

of C connecting the ends.

c. We apply this algorithm to (G’, C’). If the result is non-

planar, then G is also non-planar.

3. Compute the conflict graph I of pieces of G.

4. If I is not bipartite, G is non-planar; otherwise, G is planar.

If the graph is non-planar, we can make it planar using the following strategy:

1. Determine the largest planar subgraph of the original graph.

2. Place the remaining vertices in the faces in a way that minimizes the edge crossings.

3. For each intersection of the edges, divide the corresponding edges into two parts

and create a new "dummy" vertex at the intersection.

Rendering planar graphs

After marking a given graph as planar or expanding it to achieve planarity, we can use many

techniques to generate a representation of these graphs. One of these techniques is the so-

called visibility approach, which consists of two steps:

1. Visibility step – we will create the so-called visibility representation. In this

representation, each vertex is drawn as a horizontal line segment, and each edge is

drawn as a vertical line connecting the corresponding vertex segments. Obviously,

for planar graphs, it is always possible to draw such a representation without

intersecting edges except for those in which the vertex segments meet. Obviously,

there are many possible arrangements of line segments – one strategy may be to

arrange the segments to minimize the length of the vertical joints.

2. Replacement step – each segment corresponding to the vertex is "shrunk" to a

single point and each vertical line is replaced by a polyline, which tries to preserve

the "appearance" of the original edge as much as possible. Again, there are several

variations for this step, such as using curved lines, using one vs. more segments, etc.

Matrix representation of graphs

An alternative visual representation of the graph is the so-called adjacency matrix, which is a

grid of size NxN, where N is the number of nodes. Position (i, j) represents the presence or

absence of a link between nodes i and j. The adjacency matrix may be a binary matrix or the

value at a given position may correspond to the strength or weight of the link between the

corresponding two nodes.

This method overcomes one of the biggest problems of node-link diagrams, which is the

crossing of edges. However, it is not suitable for very large graphs (with thousands of

nodes).

Bertin was one of the first scientists to study the advantages of this representation. In

particular, he focused on various strategies for organizing rows and columns to reveal

interesting structures in the chart. The impact of the rearrangement is clear from the

figures, where each of the matrices represents the same graph with eight nodes.

There are many different algorithms for reorganizing rows and columns. Some of them are

primarily user-controlled, others are fully automatic. As with any optimization problem,

finding the optimal order of rows and columns is an NP-complete problem (more precisely,

no polynomial or faster algorithm was found). Therefore, it was necessary to implement

several heuristics that provide quality results, especially for some classes of graphs.

Labeling

Appropriate labeling of the visualization is necessary to understand what data we are

actually displaying. For example, a map without labels would not be very helpful. Similarly, a

graph using the coloring of individual elements representing the data would not be

understandable if we did not define what the colors represent. When plotting trees and

graphs, plotting labels is not easy, especially since the tress can contain many nodes and

individual edges can also be marked.

If we need only a small number of different labels, it is better to use "non-text" labels, such

as color, size, or shape of the node, or the color, thickness, or style of the line representing

the edge. This does not take up the display area, and usually these representations are

interpreted unambiguously even in the case of many crossing edges or overlapping nodes.

However, when the number of different labels exceeds five or six, the probability of

misinterpretation is relatively high.

For small graphs, a common strategy for placing node labels is to insert them directly into

the nodes - rectangular or oval node shapes are used to contain the text. To avoid

misperception of individual nodes, the size of the nodes should be set according to the

length of the longest label. In cases where the labels are too long, one of the possibilities is

to use abbreviations or numerical references with a legend for explanation.

A similar strategy can be chosen for edge labelling, where the labels are located near the

center of the edge. For edges that are predominantly vertical, markings should be placed to

the left or right of the edge. Conversely, for horizontal edges, the markings are located

above or below the edges. However, a convention should be followed that places all

markings either left / up or right / down from the edge. Otherwise, the label may be

misassigned to the edge.

With a large number of different labels to be displayed, or with an excessive length, it is

obvious that the simultaneous display of all labels is inefficient. We can use one of the

existing strategies to solve this problem.

A common solution is to display the label only in a small region of the graph, for example in

an area around the current cursor position. If the display density is too high, various

visualization distortions are required (see below) so that we can devote a larger area of the

screen space to the given section of the graph. An alternative to this solution may be to

rotate the graphs to reduce label overlaps (see figure).

Another interesting solution is to display only a random subset of labels for a short time and

then display another random subset, etc. The idea behind this solution is that the observer's

short-term memory allows the observer to memorize more labels than using a static display.

Interactions

Although we will get acquainted with the interaction techniques with different visualization

environments in detail later, we will mention here several techniques of interaction, which

are most often associated with trees and graphs. Some types of interaction, such as camera

tracking and zooming, are common to all types of visualization, so we'll mention them here

for completeness only. Others, such as focus+context, may be applicable to a variety of

visualizations, but were originally developed to visualize trees and graphs. That is why we

will deal with them in more detail here.

Interaction with a virtual camera

Common interactions, such as panning, zooming, and rotating, are considered simple

changes applied to a virtual camera that observes a particular segment of the scene. This

allows the user to incrementally observe the entire scene and create a mental model of the

objects in the scene and their relationships. Operations of this type are often controlled

manually, although there are also automated techniques, such as controlled flyovers over a

scene or automatic rotation of 3D objects.

Interaction with graph elements

Most interactions of this type begin with selection, where one or more graph components

are isolated. Highlighting, deleting, masking, shifting, or retrieving details is then performed

on these components. For example, graphs with cluttered clusters of data can be edited by

selecting a set of nodes and dragging them to an area of the screen that is less populated by

nodes, while, of course, maintaining their connection to other nodes.

Similarly, we can select and move or change the shape of the edges to eliminate their

crossing or to increase the aesthetic value of the graph.

Selections can contain a single object, all objects in a given region or distance, or objects

that meet user-defined constraints (for example, all nodes directly connected to a given

node). One of the biggest problems in selecting elements in a graph occurs in dense regions,

where the individual elements are so close to each other that unambiguous selection is

difficult or even impossible. This leads to the need to introduce other types of interaction,

such as zooming or deformation techniques, which we will discuss later.

Interaction with graph structure

We distinguish two basic classes of interaction, which are focusing directly on graph

structures.

- The first class changes the structure of the graph itself. For example, rearranging

the order of tree branches can reveal relationships that were not visible in the

original layout. Rearranging columns and rows in a matrix visualization can again

highlight new properties or relationships between data.

- The second class of interactions associated with the graph structure are the so-

called focus+context techniques, where a certain subset of a given structure

(focus) is presented in detail, while the rest of the structure is displayed only in

outlines so that the user has the appropriate context. One of the most popular

techniques of this type is fisheye, where the parts of the graph falling within the

area of interest are magnified by non-linear scaling, while the parts outside the

area of interest are proportionally reduced. This type of deformation can be

performed in screen space (derived from pixels) or in structure space (derived

from graph components). The second case is suitable for visualizing graphs,

where we can, for example, enlarge one branch of a tree at the expense of other

branches or we can highlight all the edges emanating from a given node to better

detect its neighboring nodes.

The blue area of the graph on the left has been highlighted in the image on the right, making

it easier to explore and interactively select in this area.

A technique that can be considered as similar to the two classes of interaction mentioned is

the selective hiding or removal of graph sections. For example, if a tree branch has already

been explored, the user may want to remove it from the screen to make more room for

unexplored regions. In this sense, it can be considered as a change of structure (deletion of

a component) or a reduction of details. The figure shows several subtrees that have been

hidden and a double white band informs the user that more detailed information is located

below these nodes.

Text and document visualization

We currently have a huge number of information sources at our disposal – from libraries to

archives to all applications running on the Internet. Visualization is an irreplaceable helper

for the analysis of this data. Blog, wiki, billions of words, a set of papers, or a digital library

can be viewed in several ways. Because the chosen method of visualization depends on the

given task, we will look at what tasks we must deal with when working with text,

documents, or objects on the web.

One of the most common operations on texts and documents is searching for a word,

phrase, or topic. If the data is at least partially structured, we can also look for relationships

between words, phrases, topics, or documents. For structured texts or document files,

searching for patterns or outlines in texts or documents is often a key task.

We define a set of documents as a corpus. Then we work with objects inside these corpora.

These objects can be words, sentences, paragraphs, entire documents, or even other sets of

documents. We can also consider pictures and videos as objects. These objects are often

considered atomic with respect to a given task, analysis, or visualization.

Texts and documents are often structured and contain several attributes and metadata. For

example, documents have a given format and include metadata about the document (e.g.,

author, creation date, modification date, comments, size, …).

Systems for mining information from documents work based on querying, where as a result

we receive the relevant document or its part that corresponds to the query. However, this

requires pre-processing of the document and interpretation of the semantics of the text.

We can also calculate statistics about documents, such as the number of words or

paragraphs, the distribution of words or their frequency. This way, for example, we can

identify the author.

We can also identify relationships between paragraphs or documents in the corpus. For

example, we may ask, "Which documents relate to the spread of influenza?" This is a non-

trivial query, since searching for word "influenza" is not sufficient.

Similarity can be defined, for example, in the form of citations, co-authorships, topic, etc.

We define three levels of text representation: lexical, syntactic, and semantic. Each stage

requires a conversion of unstructured text into some form of structured data.

Lexical level

The lexical level consists in transforming a string of characters into a sequence of atomic

entities called tokens. Lexical analyzers process a sequence of characters with a given set of

rules into a new sequence of characters (tokens), which can be used for subsequent

analyses. Tokens can contain characters, n-grams, words, lexemes (vocabulary units),

phrases, etc., all with associated attributes. Many types of rules are used to extract tokens,

the most common being finite state machines defined by regular expressions.

Syntactic level

The syntactic level deals with the identification and annotation of the functions of each

token. In this way we assign different marks, such as the position of a sentence or whether

the word is a noun, adjective, complement, conjunction… Tokens can also have attributes

such as whether they are singular or plural or their relationship to other tokens. "Richer"

tags contain a date, place, person, organization, or time. The process of extracting these

annotations is called NER – named entity recognition. The richness and great diversity of

language models and grammars provide a wide range of approaches.

Semantic level

The semantic level involves the extraction of meaning and relationships between knowledge

derived from the structures identified in the syntactic step. The aim of this degree is to

define the analytical interpretation of the whole text in a given context or even

independently of the context.

Vector Space Model (VSM)

Vector space model is an algebraic model for the representation of text documents (and

generally any objects) in the form of vectors of identifiers. It is used for information filtering,

information mining, indexing, etc.

Documents are represented by vectors. Each dimension in the vector corresponds to a

certain term (words, keywords, or even longer phrases). If a term occurs in a document, its

value in the vector is nonzero.

The calculation of so-called "term vectors" is a crucial step in the visualization of documents

and corpora and analysis techniques.

In the Vector Space Model, the term vector of an object of interest (paragraph, document,

set of documents) is a vector in which each dimension represents the weight of a given

word in the document. Furthermore, so-called "stop words" (e.g., the, a) are typically

filtered out to remove noise, or words with the same base (root) are aggregated.

The following pseudocode counts the occurrences of unique tokens, except for stop words.

The token stream generated from one document using a lexical analyzer is taken as input.

The variable labeled as terms contains a hash table that maps unique terms to the number

of their occurrences in the document.

Count-Terms(tokenStream)

1 terms: = ∅; / * initialize terms to an empty hash table * /

2 for each token t in tokenStream

3 do if t is not a stop word

4 do increment (or initialize to 1) terms[t];

5 return terms;

Example:

Sample text:

There is a great deal of controversy about the safety of genetically engineered foods.

Advocates of biotechnology often say that the risks are overblown. ‘‘There have been

25,000 trials of genetically modified crops in the world, now, and not a single incident, or

anything dangerous in these releases,’’ said a spokesman for Adventa Holdings, a UK biotech

firm. During the 2000 presidential campaign, then-candidate George W. Bush said that

‘‘study after study has shown no evidence of danger.’’ And Clinton Administration

Agriculture Secretary Dan Glickman said that ‘‘test after rigorous scientific test’’ had proven

the safety of genetically engineered products.

- The previous paragraph contains 98 string tokens, 74 terms, and 48 terms after

deleting stop words

- Example of term vector generated by pseudocode:

VSM – counting weights

This vector space model requires a scheme for assigning weights to terms in a document.

There are several methods for assigning weights, the best known of which is the "term

frequency inverse document frequency" – tf-idf. Let Tf(w) be the term frequency or the

number of occurrences of the word w in a document and Df(w) be the document frequency

or the number of documents that contain the word w. Let N be the number of all

documents. Then we define TfIdf(w) using a formula

This determines the relative importance of a given word in a document, which corresponds

to our intuitive view of the importance of words. We are interested in words that appear

frequently in one document but are not as common in other corpus documents. Folowing

table shows the term vectors for a group of documents using tf-idf scales.









=

)(
log*)()(

wDf

N
wTfwTfIdf

The pseudocode calculates the tf-idf vectors of each document in a given set of documents.

It uses the Count-terms function described in the previous pseudocode. The first part

iterates through all documents and calculates and stores the term frequency and document

frequency. The second part calculates the tf-idf vectors for each document and stores them

in a table.

Compute-TfIdf(documents)

1 termFrequencies ← ∅ // Looks up term count tables for document names.

2 documentFrequencies← ∅ // Counts the documents in which a term

occurs.

3 uniqueTerms← ∅ // The list of all unique terms.

4 for each document d in documents

5 do docName ← Name(d) // Extract the name of the document.

6 tokenStream ← Tokenize(d) // Generate document token stream.

7 terms ← Count-Terms(tokenStream) // Count the term frequencies.

8 termFrequencies[docName] ← terms // Store the term frequencies.

9 for each term t in Keys(terms)

10 do increment (or initialize to 1) documentFrequencies[t]

11 uniqueTerms← uniqueTerms ∪ t
12

13 tfIdfVectorTable ← ∅ // Looks up tf-idf vectors for document names.

14 n ← Length(documents)

15 for each document name docName in Keys(termFrequencies)

16 do tfIdfVector ← create zeroed array of length

Length(uniqueTerms)

17 terms ← termFrequencies[docName]

18 for each term t in keys(terms)

19 do tf ← terms[t]

20 df ← documentFrequencies[t]

21 tfIdf ← tf ∗ log(n/df)

22 tfIdfVector[index of t in uniqueTerms]← tfIdf

23 tfIdfVectorTable[docName] ← tfIdfVector

24 return tfIdfVectorTable

Zipf's law

Most often we encounter a normal and uniform type of value distribution. Economist

Vilfredo Pareto argued that the company's return is inversely proportional to its position – a

classic power law, which results in the well-known 80-20 rule, where 20% of the population

owns 80% of the world's wealth.

Harvard linguist George Kingsley Zipf called the distribution of words in natural language

corpora using the discrete power distribution the Zipf distribution. Zipf's law states that in a

typical natural language document, the frequency of any word is inversely proportional to

its category (rank) in the frequency table. The plot of the Zipf curve on a logarithmic scale in

both axes has the shape of a straight line with a slope of -1.

One of the immediate implications of this law is the fact that a small number of words

describes most of the key concepts in small documents.

Tasks using Vector Space Model

Vector space model supplemented with some distance metrics allows you to perform a

variety of tasks. We can use tf-idf in combination with a vector space model to identify

interesting documents. We can answer questions such as: Which documents are similar to a

given document? Which documents are relevant to a given set of documents? Which

documents are most relevant to a given search query? These are the documents whose

term vectors are as similar as possible to the specified document, an average term vector

through the document set, and a search query vector.

Another indirect task may be to provide the user with the meaning of the whole corpus. The

user can search for patterns or clusters and theme distribution through a set of documents.

This often involves visualizing the corpus in a 2D layout or presenting it to the user in the

form of a graph with links between documents for better navigation between them.

The visualization pipeline maps well to document visualization: we obtain data (corpus),

transform it into vectors, then run the appropriate algorithms based on the given task

(similarity, search, clustering…) and generate the visualization.

Visualization of individual documents

We will now look at several techniques for visualizing a single document.

Tag clouds – also known as text clouds or word clouds, are layouts of individual tokens that

are colored, and their size is set according to their frequency in the document.

Font size and hue are proportional to the frequency of words in the document.

Text clouds and their variations (such as Wordle – see image below) are examples of

visualization that uses only the frequency of term vectors and layer layout algorithms.

Font size corresponds to the frequency of words in the document.

WordTree is a visual representation of both the frequency of terms and their context (see

picture). Size is used to represent the frequency of a term or phrase. The root of the tree is a

user-defined word or phrase, and the branches represent the various contexts in which the

word or phrase is used in the document.

TextArc

We can extend the representation of word layouts with connectivity visualization. There are

several ways to calculate connectivity. TextArc is a visual representation of how terms are

related to the lines of text in which they appear (see figure). Each word of the text is drawn

around an ellipse. As with Text Clouds, words with a higher frequency are rendered larger

and brighter. Higher frequency words are drawn inside the ellipse depending on their

occurrence on the circle (similar to the RadViz technique).

Arc Diagrams is a technique aimed at displaying repetitions in text or any sequence.

Repeating subsequences are identified and connected by semicircular arcs. The thickness of

the arc represents the length of the subsequence, the height of the arc represents the

distance between the subsequences.

The picture visualizes Bach's Minuet in G major, where the classical structure of the Minuet

can be seen. It contains 2 parts, each consisting of a long passage that is played twice. The

parts are not too related. The overlap of these two parts shows that the end of the first part

is the same as the beginning of the second part.

Literature fingerprinting is a method of displaying the properties that characterize a given

text. Instead of counting the values of only one of the properties or the vector representing

the text, we compute a sequence of property values for the whole text and present it to the

user as a characteristic "fingerprint" of the document. This allows the user to investigate the

document and analyze the evolution of values throughout. In addition, the structural

information about the document is used to visualize the document at various levels of

resolution.

This method is used, for example, to verify authorship.

The figure shows an example of authorship verification. Each pixel represents a block of

text, and the pixels are clustered into books. The color is mapped here to the average length

of sentences. It can be seen that the fingerprints of Jack London's and Mark Twain's books

are visually different.

Document set visualization

When visualizing a set of documents, the goal is usually to place similar documents close to

each other, and, conversely, the dissimilar ones as far apart as possible. This is a problem of

finding the minimum and maximum values – O(n2). We calculate the similarity between all

pairs of documents and thus determine their distribution. Common approaches are graph

spring layouts, multidimensional scaling, clustering, and self-organizing maps.

A self-organizing map (SOM) is created with a machine learning algorithm using a collection

of typically 2D nodes into which we place documents. Each node has an associated vector of

the same dimensionality as the input vectors (document vectors) that were used to train the

map.

SOM is thus a type of artificial neural network that creates a low-dimensional (typically 2D)

discrete representation of the sample input space, which we call a map. To preserve the

topology of the input space, a function that considers neighbors, is used.

At the beginning, SOM nodes are initialized – typically random values are set for them. Then

a random vector is selected from the set of input vectors and its distance from all other

nodes is calculated. We assign weights to the nearest nodes (in a given radius) – the nearest

node has the largest weight. When iterating through input vectors, the radius gradually

decreases.

The training of the neural network with respect to neighbors works as follows. The blue

cloud represents the distribution of the training data, and the small white circle indicates

the current training sample. Initially, the SOM nodes are arranged arbitrarily in the data

space. The node closest to the current training sample (yellow) is moved to that sample.

After a few iterations, we get to the result on the right.

An example of the use of SOM for text data is shown in the figure, which shows a million

documents collected from 83 discussion groups in Finland. Labels indicate areas of

discussion topics; color represents the number of documents – lighter areas mean higher

occurrence.

Themescapes are basically summary information about corpora in the form of 3D

landscapes, where height and color are used to represent the density of similar documents.

Document cards are compact visualizations representing the key semantics of documents in

the form of a mixture of images and key terms, which are obtained using advanced text

mining algorithms (based on automatic extraction of the document structure). Images and

their captions are derived using graphical heuristics.

In addition, a color histogram is used for the images, that are sorted and classified into

individual classes (class 1: photographs / rendered images, class 2: diagrams / sketches /

graphs, class 3: tables) and then at least one representative of each non-empty class is

displayed.

The figure shows the IEEE Infovis 2008 proceedings corpus, which is represented by a matrix

of document cards. The term frequency on each page is highlighted on the right side of the

card (the redder, the higher the frequency – e.g., the left document in row 3).

Advanced methods of text visualization

We will now focus on several visualization techniques for texts that include metadata.

- Software Visualization

- Search Result Visualization

- Temporal Document Collection Visualizations

- Representing Relationships

Software Visualization

Eick et al. developed a visualization tool called SeeSoft, which we have already encountered,

and which visualizes statistics for each line of code (e.g., "age" and number of modifications,

programmer's name, date). In the figure, each column represents a source code file, where

the height of the column corresponds to the size of the file. If the file is larger than the

screen height, the next column continues. Each line in the columns represents one line of

code. If the source file is too large, each line of code is represented by a pixel in the row in

the column. This significantly increases the number of rows we can display. The color is

mapped to the number of calls. The redder the line, the more often it is called. Conversely,

the lines called rarely are blue. The color can also be used for other parameters, such as the

time of the last modification or the number of modifications.

With a window size of 100x100 pixels, SeeSoft can display more than 50,000 lines of code.

Screenshot contains 52 files with 15,255 lines of code.

Search Result Visualization

Marti Hearst has developed a simple visualization for query results that is in principle very

similar to Keim's pixel displays. He called it TileBars. It displays a variety of statistics related

to terms, such as the frequency and distribution of terms, document length, and more.

Each document in the resulting set is represented by a rectangle, where the width indicates

the relative length of the document and the layered squares inside correspond to the text

segments. Each row of a given stack containing text segments represents a set of query

terms, and the shade of the squares indicates their frequency. The titles and first words of

the document appear next to their TileBar.

Each large rectangle represents one document, and each small square within the document

represents a text segment. The darker the square, the higher the frequency of the set of

query terms. This produces a very compact representation and provides information about

the structure of the document reflecting the relative length of the document, the frequency

of query terms, as well as their distribution.

An example below shows searching for the words Information and Visualization in two

different documents. Document 1 is longer, and the individual squares and their color

(shade) indicate the frequency of occurrence of the word in the corresponding part of the

text. It can be seen that in the first document, these two words do not appear in any part at

the same time. On the contrary, in the second, shorter, document, these words appear in

three parts at the same time. Therefore, if we are looking for the phrase Information

Visualization, the second document will be more suitable for us.

Temporal Document Collection Visualizations

ThemeRiver, also called stream graph, is used to visualize thematic changes over time for a

set of documents. This visualization assumes that the input data changes over time.

Thematic changes are visually represented by colored horizontal bands, the vertical

thickness of which at a given horizontal location represents their frequency at a given point

in time.

Jigsaw is a tool for visualizing and exploring text corpora. It uses the appearance of a

calendar, where document objects are placed in the calendar based on the date when the

given entities were identified in the text. When a user clicks on a document, the entities

appearing in that document appear immediately.

Representing Relationships

Jigsaw also contains a representation in the form of a graph of entities. Entities are

connected with the documents in which they occur. This representation does not show the

entities of the entire document collection, but the user can interactively change the areas of

interest.

Jigsaw List view is an alternative to the graph view. If the user selects items that interest

him, the list view draws connection lines showing their relationships.

