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Interaction in the context of information visualization is a mechanism by which we can 

influence what and how the user is seeing. 

Interaction techniques 

There are several classes of interaction techniques: 

- Navigation - the user changes the position of the camera and scales the view (what is 

mapped to the screen). An example is rotation or zooming. 

- Selection - identifying a specific object, set of objects or area of interest, to which we 

then apply certain operations, such as highlighting, deleting, or modification. 

- Filtering - reduces the size of the data we map onto the screen - by removing records, 

dimensions, or both. 

- Reconfiguration - the user can change the way data is mapped to graphical entities or 

attributes. An example is data reorganization or data distribution. In this way, we provide 

the user with different views of the displayed data set. 

- Encoding - the user changes graphic attributes, such as point size or line color. The goal is 

to reveal various properties of the data. 

- Merge - the user can use tools to merge different views or objects to display related 

items. 

- Abstracting / concretization - level-of-detail modification. 

- Hybrid techniques - combining some of the above techniques. For example, increasing 

the screen space that is used to display the detail of certain data, while reducing the 

space devoted to "uninteresting" data that is displayed to preserve context. 

 

Until now, several techniques and tools have been developed for interacting with data and 

generally visualizing the information. Although some of them appear to be completely 

unrelated to others, they share basic principles and have a common goal. In this lecture, we 

will try to outline the basis of interaction techniques. We start with identifying the classes of 

interactive operations, which we describe as operators, and then define the so-called 

operand (the space to which the operator is applied).  



We will now describe in more detail several interaction operations that are commonly used 

in the visualization of data and information. The list will not be exhaustive, of course, but 

should cover typical interaction techniques. A more detailed and comprehensive description 

of other techniques can be found in Keim's classification (http://nm.merz-

akademie.de/~jasmin.sipahi/drittes/images/Keim2002.pdf) or the taxonomy of Ed H. Chi 

(http: // www -users.cs.umn.edu/~echi/papers/infovis00/Chi-TaxonomyVisualization.pdf). 

It should be mentioned that individual interaction operators can be part of several proposed 

classes of interaction and that almost all operators can be automatic in a given visualization, 

even in its non-interactive part. An example is zooming, which is available in almost all 

visualizations. We can look at zooming as generating a new visualization, especially if we 

have to display different data. 

   

Navigation operators 

Navigation (sometimes referred to as exploration) is used to find a subset of the input data 

to be explored, the orientation of the view of that data, and the level-of-detail (LOD). The 

subset being queried may be determined using a particular visual pattern, or it may be a 

piece of data that is subject to further detailed examination. In 3D space, navigation is 

typically determined by the position of the camera, the direction of the view, the shape and 

size of the viewing frustum, and the degree of LOD. 

In visualizations that support multiple resolutions at once, the LOD corresponds to 

descending in the data hierarchy. Navigation operators can work with absolute or relative 

coordinates in a given space. Navigation can be automatic, or user controlled. 

An example of automatic exploration is flying along a path over multidimensional data, 

which covers most or even all possible orientations of the data space when projected into 

2D space (see figure). The user can influence the step size between views. 

 

 

 

 

 

 

 

 



Selection operators 

When selected, the user isolates a subset of the components for display, which are further 

subject to other operations, such as highlighting, deleting, masking, or moving to the center 

of the area of interest. So far, various selection variants have been developed and we usually 

choose the appropriate variant so that we have to decide what result we expect. For 

example, should the new selection replace the existing one or should it rather supplement / 

enrich it? 

The granularity of the selection is also one of the main topics. By clicking on a given entity 

on the screen, we can select only the smallest addressable component (e.g., vertex on the 

edge) or we can select a wider region around the selected location (e.g., the whole object, 

area on the screen, surface, …). 

The choice can be determined in many ways. The user can click on individual entities, "draw" 

through the selection of entities (e.g., by holding the mouse button while moving over 

objects of interest) or isolate entities in some other way (for example, by selecting a 

rectangle, lasso, …). 

Selections can also be created indirectly when the system selects elements that match a set 

of user-specified restrictions. An example is selecting nodes in a graph that have a certain 

maximum distance from the selected node. 

Filtration operators 

Filtering, as the name suggests, reduces the number of data to be displayed by setting 

various restrictions that specify which data will be retained and which will be deleted. An 

example of such a filter is the so-called dynamic query specification, which was described by 

Shneiderman et al. (http://www.cs.umd.edu/~ben/papers/Shneiderman1994Dynamic.pdf). 

To determine the extent of interest in the data, sliders are specified, during the manipulation 

of which the visualization is immediately updated to reflect changes caused by the user. This 

method of querying by setting ranges is only one way of applying filtering. Another method 

selects the items you want to keep or hide. An example is the function of hiding columns in 

Excel. 

 

 

 

 

 



The figure shows the use of filtering to simplify the view of data and their interpretation. 

Rows and columns are filtered using the XmdvTool. 

The difference between filtering and selection followed by deleting or masking is small, but 

essential. Filtering is most often done indirectly - for example, the filter specification is not 

performed on the data visualization itself, but in a separate dialog box or interface. Filtering 

is often done before the data is displayed to avoid displaying too much data on the screen. 

In contrast, the selection is most often made directly, when we mark the displayed objects, 

for example, by clicking the mouse into the scene. Further operations performed on the 

selected set may lead to a result that is the same as using filtering. 

 

Reconfiguration operators 

Reconfiguration of data in a given visualization is often used to reveal properties or to deal 

with the complexity or scale of the data. By reorganizing the data, such as filtering out 

certain dimensions and rearranging the remaining ones, we can provide the user with 

various new views of the data. An example is a tabular visualization tool that sorts rows and 

columns to highlight trends and correlations between data. 

Another example of reconfiguration may be to change the dimensions used to control the x 

and y coordinates of the drawn marks. 

Popular methods of data reconfiguration are the previously mentioned PCA (principal 

component analysis) or MDS (multidimensional scaling), which try to preserve the 

relationships between data in all dimensions when projected into a lower dimension (often 

2D). 

 

Encoding operators 

Any dataset can be used to generate countless different visualizations. Data properties that 

are not visible in one visualization method may be apparent when using another type of 

visualization. For example, for a particular dataset, the use of a scatterplot may lead to point 

overlap, while, for example, when using parallel coordinates, the points may have a unique 

representation. 

Many visualizations today support several types of visualizations at the same time because a 

single type of visualization cannot capture an effective view of all the tasks that the user 

wants to perform on data. Each of the visualizations is best suited for a certain subset of 

data types, their properties, and user-specified tasks. 



Data encoding is performed by various types of mappings and views of the data, by which 

the user can properly examine the data. Other forms of coding operations may, for example, 

modify the color map, the size of the graphic entities, or their shape. This can be considered 

as different variations of a given type of visualization and helps to reveal areas of interest. By 

using various variations of the technique, we can overcome several limitations of the 

visualization technique used. For example, the problem of overlapping points in point 

diagrams can be eliminated by shaking the points or selecting the size of the individual 

points in such a way that the size of the point is derived from the number of points in the 

same position. Other attributes of graphic entities that we can affect include transparency, 

texturing, line or fill style, but also dynamic attributes, such as loss of intensity or blink rate. 

It should be noted that these effects can often be mimicked by using transformations 

directly on the data instead of on their graphical representation. 

 

Aggregation operators 

A common use of selection operations is to combine selected data in one view with 

corresponding data in other views. There are many ways to connect between the panes of a 

given application, however, probably the most used form of communication between 

windows in modern visualization tools is the so-called linked selection. The popularity of this 

form is mainly because each of the data views can reveal interesting properties and that 

highlighting one of these properties in one view can help build a "richer" mental model of 

this property when viewed in other views (see figure). In parallel coordinates, we select the 

examined cluster, which is displayed in the matrix of corresponding point diagrams using a 

rectangle. 

 

 

 

 

 

 

If it is allowed to change the data selection interactively, this operator is called brushing, 

where the user can continuously change the selection in one view, and the corresponding 

combined data in the other views are highlighted. Another strength of the linked brushing 

technique is the specification of complex constraints for a given selection. Each type of view 

is optimized to emphasize a certain type of information. For example, we can specify time 



constraints when using a visualization that includes a timeline, restrictions on field names 

when using a list view, and geographic constraints for maps. 

In certain cases, the user may want to unlink some visualizations, leaving the view, but we 

want to explore a different area of data or a different dataset. Some systems allow the user 

to specify for each window whether information should be transmitted to other windows or 

from which windows that window receives input. 

Some types of interaction can be local to a given window (e.g., zoom), while others are 

shared between all windows (e.g., reordering dimensions). 

 

Abstraction/concretization operators 

When displaying a large amount of data, it is often useful to focus only on a certain subset of 

data, about which we display details (concretization), while on other parts of the data we 

reduce the degree of detail (LOD) (abstracting). One of the most popular techniques of this 

type is distortion operators. While some scientists classify these distortions as a visualization 

technique, they are in fact a transformation that can be applied to any type of visualization. 

Like zooming or panning, distortion is suitable for interactive data exploration. Many 

distortion operators (also called functions) have been proposed in the past. This includes 

methods that deform the entire analyzed space or methods that apply deformations only 

locally. 

The distortion can be part of the original visualization or can be displayed in a separate 

window. Distortion differs in the ratio of the properties they retain to the input data. For 

example, text distortion techniques seek to be as legible as possible in a given area of 

interest, and the rest of the text is given mainly to maintain the structure of the document 

but may not be legible. 

Distortion operators can be linear or nonlinear, with zero, first or second order continuity 

(discontinuous operators can also be used). Operators can be applied to structures instead 

of contiguous spaces, and therefore can be specific to a given type of operand (see below). 

Different operators have different footprints, such as the shape or extent of space affected 

by a transformation. Common fingerprint shapes are rectangular or circular, to which 

hyperboxes and hyperellipses correspond in higher dimensions. The extent of the affected 

space is usually specified by a distance function within the deformed space and is often 

multidimensional. These ranges can be fixed or variable, user controlled, or information 

semantics. 

 

 



Interaction operands and spaces 

The parameters of the interaction operators we have described so far will be discussed even 

further. Before that, we will show the categorization of interaction operands, which will help 

clarify the role that these parameters play in the interaction process and their semantics 

within different spaces. 

The interaction operand is the part of the space to which the interaction operator is 

applied. 

To determine the result of an interactive operation, we must know within which space the 

interaction will be performed. In other words: if the user clicks on a given place or area on 

the screen, which entities do they actually want to mark? These can be pixels, data values or 

records mapped to a given location or part of a visualization structure (for example, an axis). 

Several different classes of interaction spaces have been identified. We will now describe 

these spaces, including examples of existing interaction techniques that fall into each class. 

We distinguish several basic interaction operands. 

• Screen space (Pixels) 

• Data value space (Multivariate data values) 

• Components of Data Organization 

• Components of Graphical Entities 

• Object space (3D Surfaces) 

Screen space (pixels) 

Screen space navigation typically consists of actions such as panning, zooming, or rotating. In 

none of these cases do we use any new additional data - the process consists of pixel-level 

operations such as transformation, sampling, and replication. 

Pixel-level selection means that at the end of a given operation, each pixel is classified as 

selected or unselected. As previously mentioned, the selection can be made over individual 

pixels, rectangular or circular areas of pixels, or over areas of any shape that the user 

defines. Selection areas can also be continuous or discontinuous. 

Distortion in screen space involves a transformation on pixels, for example (x’, y’) = f(x, y). 

Magnification m (x, y) at a given point is simply a derivative of this transformation and is 

useful for switching between transformations and their magnifications during the distortion 

process. Examples of screen space techniques are fisheye, rubber sheet (relief). 



An example of this type of distortion is shown in the figure. The matrix of graphs is shown on 

the left, and the rubber sheet on the right. 

 

 

 

 

 

 

Let's take a closer look at one of the typical examples of this distortion: the fisheye. The 

implementation of the fisheye is relatively straightforward. It is necessary to specify the 

center point (cx, cy) of the transformation, the radius of the lens (magnifying glass) rl and the 

amount of deflection d. Then the coordinates of the image are transformed into polar 

coordinates relative to the center point. The magnifying glass effect is obtained by a 

relatively simple transformation applied within the radius rl. 

One of the popular transformations of this type is given by the formula: 

 

where 

 

This formula ensures that the radius of the points located at the edge of the magnifying glass 

is maintained at its original value. Now let's look at the pseudocode of the whole algorithm: 

1. Clean the output image. 

2. For each pixel of the input image: 

1. Calculate the corresponding polar coordinates. 

2. If the radius is smaller than the radius of the magnifying glass: 

1. Calculate the new radius rnew. 

2. We get the color of this place from the original image. 

3. Set this color as the pixel color in the output image. 

3. Otherwise, set the resulting pixel of the image to the same value as in the 

original image. 
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Depending on the type of transformation used for the distortion in the screen space, we 

have to deal with the holes or, conversely, the pixel overlap that occurs during the 

transformation. Pixel overlap does not cause as much problems as holes. Nevertheless, 

overlapping pixels are often averaged in specific implementations. Holes must be solved 

using interpolation. Here it depends on the type of magnifying glass used - for text 

visualization, a linear function with a "flat" center part is most often used for interpolation, 

so that the text in this part can be read without problems. 

                       

 

 

Space of data values (Multivariate data values) 

Navigation in the data value space involves the use of these data values as a view 

specification mechanism. Analogous panning and zooming operations are used to change 

the displayed data values - panning shifts the starting position of the range of values for 

display, while zooming increases / decreases the size of this range. 

Selection in the data value space is similar to database queries, where the user specifies a 

range of data values for one or more dimensions. This can be achieved by direct data 

manipulation, such as data-driven brushing (see figure) or by using sliders or other query 

specification mechanisms.  



 

The data value space is probably the most intuitive space in which filtering is performed. 

When visualizing large data sets, it is common practice to reduce the data first. For spatial 

data, this is analogous to trimming data falling outside the viewing region. For non-spatial 

data, this reduction corresponds to deleting some records, dimensions, or both. 

Dimensions can also be filtered to allow users to explore a subset of dimensions with similar 

properties or to select representatives for individual cluster clusters. 

When distorted in the data value space, the data values                          are transformed using 

the j:                                                             function. This transformation takes place before the 

visualization itself. In fact, each of the dimensions may be subject to its own transform 

function                      .   . In the most general case, the function can depend on any number of 

dimensions, although in such a case the possibility of controlling the filtering by the user is 

problematic. 

 An example of data space distortion is the previously mentioned XmdvTool tool, where each 

dimension of a selected subset of data is scaled in such a way that the subset can be 

displayed in screen space (see figure). 

 

 

 

 

 

 

In the picture, the N-dimensional hyperbox is selected and then scaled across all dimensions, 

thus filling the unit hypercube. 
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Space of data structures (Components of Data Organization) 

Data can be structured in many ways, such as into lists, tables, grids, hierarchies, and graphs. 

For each of these structures, it is possible to develop a special interaction mechanism that 

determines which parts of the structure we will manipulate and how this manipulation will 

manifest itself. 

Navigating in the space of data structures involves moving the view specification along the 

structure, such as when displaying sequential groups of records or navigating a hierarchical 

structure (operations of moving up or down in the structure). 

As an example, let's take a picture that shows the difference between zooming in screen 

space (left - involving pixel replication) and zooming in data structure space (right - involving 

getting more detailed data at the desired resolution). 

 

 

 

 

 

 

 

Selection in the space of a data structure generally involves displaying the structure and 

allowing the user to identify areas of interest within the structure. An example is structure-

based brushing, which allows you to control the selection of data stored in a cluster 

hierarchy. An example of an interaction in this case is to highlight data that falls into a 

particular branch of a tree. 

Another example is the InterRing visualization tool, which displays the hierarchy radially and 

by filling a space. This tool allows semi-automatic selection of nodes, due to their 

hierarchical structure.  



 

The figure shows an example where end nodes are automatically selected. This selection 

was created by querying the end nodes above their common ancestor. 

Here, too, filtering is often used to reduce the amount of information displayed. For 

example, for visualizations over time, it is common practice to define a range on the timeline 

that we want to focus on. Exploring the environment in graph visualizations, in turn, often 

involves filtering nodes and edges that are further than the user-specified number of "hops" 

(meaning the number of edges) from a given point of interest. For hierarchical methods, 

filtering is based on the level of the hierarchy. 

Distortion on hierarchical structures is very common, especially due to the density of 

information, which is derived from broad or deep hierarchical structures. Several scientists 

have focused on techniques based on mapping the hierarchy radially. 

In all these cases, the data is stored in the structure instead of in the data values themselves 

or in the mechanism as they are visualized. 

Formalization of this procedure is more complicated than in other cases. However, most 

distortions can be defined by mapping a vector (D, S), where D is data and S is a structure 

that stores that data, to a vector (D', S'), where the transformation can modify the data, the 

structure, or both. 

Now consider the arrangement of dimensions for the visualization of multivariate data. Fully 

manual techniques in this case may involve manipulating the text entries in the list (using a 

move-up and down operation or using a drag-and-drop technique). In the case of parallel 

coordinates or matrices of scatter plots, we can manipulate the axes directly. For a matrix of 

scatter plots, moving one element can cause changes in other rows and columns if, for 

example, we want to maintain symmetry along the main diagonal. 

In contrast, automatic dimensioning requires at least two basic design decisions: how to 

measure the quality of an arrangement and what strategy to choose to find those quality 

arrangements. Different metrics can be selected for these decisions. One of the commonly 

used is the sum of the correlation coefficients between each pair of dimensions.  



 This correlation coefficient between the two dimensions is defined as follows: 

 

 

where n is the number of data points, X and Y are two dimensions, xi and yi are the values for 

the i-th data point, μX is the mean value in X, and σX is the standard deviation for X. 

Another approach to measuring the quality of an arrangement may involve simplicity of 

interpretation. Different dimensional arrangements can lead to representations with larger 

or smaller visual clusters or structures. For example, it is stated that using glyphs 

representing data points makes it easier to analyze simple shapes instead of complex ones. 

Therefore, if we are able to measure the average or cumulative complexity of a shape (e.g., 

by counting depressions or vertices of a shape), we can use this knowledge to compare the 

visual complexity of different dimensional arrangements.  

 

 

 

 

 

 

An example is in the picture, where the left part shows the original arrangement, while the 

right part shows the results after rearranging the dimensions, where we try to reduce the 

concave areas of glyphs and increase the percentage of symmetrical shapes. 

If we have selected the required quality of arrangement, the next task is to find an effective 

search strategy for finding these quality arrangements. The evaluation of all possible 

arrangements of dimensions is very demanding, if the number of dimensions is not very 

small (the number of individual arrangements is N!). This number can be divided by 2 if we 

consider symmetric solutions, but we still have to evaluate a huge number of possibilities. A 

typical strategy in these situations is to use optimization techniques. The problem of 

arranging dimensions is very similar to the problem of a business traveler, so we can directly 

use the algorithms used for this problem. 

One of the simplest algorithms works as follows: 

1. Select any two different dimensions 

2. Swap their positions and calculate the quality of the arrangement 
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3. If the quality is lower than the quality of the original layout, we will cancel the 

swap 

4. Repeat steps 1-3 with a fixed number of iterations or until a certain number of 

tests performed show no improvement in quality 

These heuristic approaches are definitely not optimal, but they often lead to finding an 

acceptable solution. These approaches can also be combined with a manual approach, 

where the user can enter some arrangements manually based on his knowledge of the data 

set and then let the system automatically calculate a quality arrangement on his modified 

set. 

Space of attributes (Components of Graphical Entities) 

Navigating in the attribute space is very similar to navigating in the data value space. 

Panning involves shifting the range of values of interest, while zooming can be achieved 

either by scaling attributes or increasing the range of values of interest. 

As with data-driven selection, selection in the attribute space requires the user to specify a 

subset of those attributes of interest. For example, if we have a color map representation, 

the user can select one or more entries to be highlighted. Similarly, if data records contain 

attributes such as quality or uncertainty, then a visual representation of those attributes 

accompanied by appropriate interaction techniques allows the user to filter or highlight data 

based on those attributes. 

In the attribute space, remapping often occurs - either by selecting different ranges of a 

given attribute, or by selecting different attributes for a given input set. For example, in 

GlyphMaker, a user can select to map a given data dimension from a list of possible graphical 

attributes. 

Let's have the A attribute of a given graphic entity. We can perform a distortion 

transformation by applying the function k: a’= k (a). We can assume that A can take values 

from the range [a_0 → a_1] or that A is specified as a vector. For example, color map 

distortion can allocate a wider or narrower range of values for some subsets, increasing the 

readability of subtle deviations (see figure). The figure shows the attribute distortion in the 

form of a color map modification, which was generated using the color map editor in the 

OpenDX system. The color map is distorted in such a way that a larger range of values is 

assigned to the center of the data range. 

This form of distortion is often used in the analysis of medical images to identify areas of 

interest. 

 

 



 

 

 

 

 

 

 

Space of objects (3D Surfaces) 

In this view, the data is mapped to geometric objects, and this object (or its projection) is 

subsequently subject to interactions and transformations. Navigating in the space of objects 

often consists of moving around objects and observing the surfaces on which the data has 

been mapped. A system that supports navigation in the object space should allow a global 

view of the object as well as detailed views. These can be limited in some way to quickly 

offer the user "good views" of the object. 

Selection involves clicking on objects of interest or selecting target objects from a list. 

A typical example of remapping in object space is to change the object to which the data is 

mapped, such as switching the mapping of geographic data from a plane to a sphere and 

vice versa. 

Examples of distortion in this form of interaction are the so-called perspective walls (left) 

and hyperbolic projections (right). These methods can be seen as variants of the method 

based on the screen space, where the object on which the data is projected encapsulates 

the distortion function. However, after mapping is applied, surfaces may undergo other 3D 

transformations, such as rotation, scaling, and perspective distortion.  

 

 

 

 

 

 

 



The process of distortion in the space of objects can be represented as a sequence of two 

functions: 

- The first maps the data (generally parameterized in two dimensions) to a 3D 

structure: 

- The second transforms this structure and projects it on the screen:  

 

One of the methods for navigation in the visualization of a large number of documents and 

data are the so-called perspective walls. This approach shows one panel of the view of the 

surface of the object located orthogonal to the direction of view and the other panels are 

oriented in such a way that they disappear with distance, in a way defined by perspective 

deformation. 

 

A simplified version of a perspective wall can be created so that the front wall implements 

horizontal scaling of a portion of the mapped 2D image, while adjacent segments are 

subjected to horizontal and vertical scaling proportional to their distance to the edge of the 

front wall. In addition, a chamfer is applied to these segments. 

 

Thus, if the left, middle, and right sections of the original image to be drawn on the 

perspective wall are delimited by (x0, xleft, xright, x1) and the left, middle, and right panels of 

the resulting image are defined as (X0, Xleft, Xright, X1), then the applied transformation is as 

follows: 

for x < xleft: 
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for xleft ≤ x < xright: 

 

 

for x ≥ xright: 

 

 

When using a perspective wall, the user can interact with it by sequentially scrolling through 

the "pages" (forward and backward). It is also possible to use indexes for direct access 

(jumping) to the area of interest - often this is implemented as a tab protruding at the top of 

the page at the beginning of each section. 

 

Space of structure visualization 

Visualization focuses on a structure that is relatively independent of values, attributes, and 

data structure. For example, a grid into which a matrix of scatter plots is drawn, or axes 

displayed in different types of visualizations, are components of the visualized structure on 

which the interaction focuses. 

An example of navigation when visualizing a structure space is scrolling pages in a tool based 

on tabular visualization or zooming to individual graphs in a matrix of scatter graphs. 

When selecting, typical operations involve selecting components to be hidden, moved, or 

rearranged. For example, a user can select an axis of parallel coordinates and drag it to a 

different position to discover different relationships between data dimensions. 

An example of distortion in this space is the so-called table lens technique, which allows the 

user to transform rows and / or columns of a table to provide multiple LODs. This process 

applied to a matrix of scatter plots is shown in the figure. 
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The image generated by the TableLens tool shows a matrix of scatter plots in which two cells 

(and their corresponding rows and columns) are enlarged at the expense of the other cells. 

 

Animation transformations 

Basically, all interactions within visualization systems lead to a change in the displayed 

image. Some of these changes are quite dramatic - for example, when opening a new 

dataset. Other changes may preserve some aspects of the view and change others. In case 

the user wants to keep the context while focusing on the changing area, it is desirable to 

provide a smooth transition between the initial and target visualization. For example, when 

rotating with a 3D object or dataset, a smooth change of orientation is generally much 

better than a step transition to the final orientation. In some cases, it is sufficient to use a 

simple linear interpolation between the initial and final configuration. In other cases, 

however, linear interpolation does not lead to a constant rate of change (for example, when 

the camera moves along a curve). In addition, in most cases we get a much more attractive 

result using gradual acceleration and slowing down of change. In this section, we will focus 

on the algorithms we must use to achieve this change control. 

The first step in algorithms for controlling changes in data is to obtain a uniform 

parameterization of the variable or variables that we want to control during the animation. 

For some variables, such as straight line positioning or scaling, we use linear interpolation to 

provide consistent changes over time. For other variables, such as positions along a curved 

path, we need to reformulate the problem by introducing a new parameter.  

Suppose that the original parameter is a function of the variable t, which takes values from 0 

to 1. For example, we can use a cubic polynomial to calculate the (x, y) position for different 

values of t:x(t) = At3 + Bt2 + Ct + D (same for y). Now we can create a list of positions pi for     

0 <= i <= n, where n is the number of steps between the start and end positions. Division of t 



into n same subintervals is reached by simple assignment of the corresponding t values to 

the parametric equation. 

 Then we can estimate the length of the arc A by the sum of the distances between 

successive points: 

 

Obviously, the smaller the step between adjacent points, the more accurate the estimate of 

the arc length. 

However, for most curves, the distance between adjacent points is different. Therefore, if 

we always used the approach described above, the speed of the resulting animation would 

be variable. 

When calculating the length of the arc, it is also useful for each point pi to calculate the 

distance di from the beginning of the curve to this point. 

Then we calculate the function A(i), which represents the percentage of the distance the 

point travels in the i-th time step. 

For simplicity, we will use the variable t (0.0 <= t <= 1.0) instead of the variable. Next, we 

define a new parameter s = A(t). We store the results in a table, so for each value of t we 

know its corresponding value s = A(t). We use the value of s to determine the uniform 

velocity (using linear interpolation). 

The above procedure is referred to as reparameterization. The s parameter is now used to 

control the speed. When we draw the parameter s as a function of time, we get a straight 

line leading from the beginning (0.0, 0.0) to (1.0, 1.0). In other words, at the beginning of the 

animation we start in the original position and when the time reaches 1.0, we are in the end 

position. The speed simply corresponds to the slope of this curve. But what about cases 

where the curve is not straight but curved? Then the parts with a small slope represent a low 

speed and, conversely, a large slope represents a high speed. 

Because the start and end points are fixed, we are assured that we end where we want. 

To specify the animation between the start and end point, we have an infinite number of 

settings. We can even stop the animation for a while. The main assumption is that the curve 

increases monotonically, and now let's also assume that it cannot go back. 

A common type of animation control curve is a curve that represents a gradual increase in 

speed at the beginning of the animation from zero to the desired speed, and then again, a 

gradual decrease in speed to zero at the end of the animation. This behavior is exactly 

represented by the sine curve. The key requirement is to maintain a smooth curve. 

 


=

=

−=
ni

i

ii ppdistA
1

1 ),(



 

 

 

 

 

Sometimes it is easier to specify motion using a velocity curve. Velocity is simply the first 

derivative of the position curve. The speed curve for the case of gradual increase and 

decrease of speed consists of a segment that increases evenly from zero, then a straight 

segment and at the end of a descending segment ending at zero (see figure).  

 

The space under the curve must correspond to a value of 1.0 - because if the required speed 

is too large, we have to spend more time in the ascending and then descending part. 

A third type of curve that is sometimes used to control motion is the acceleration curve. 

Corresponds to the second derivative of the position curve or analogously to the first 

derivative of the velocity curve. The shape of the curve representing the gradually increasing 

and then decreasing velocity is composed of three horizontal line segments - one above the 

axis (positive acceleration), one on the axis (constant velocity) and one below the axis 

(deceleration). 



 

The relative positions and lengths of the lines above and below the axis can be used for 

different effects and are not necessarily symmetrical. However, the spaces defined by the 

ascending and descending phases must be equal. 

The position curve and the velocity and acceleration curve can be used to control any 

attribute that changes during the animation. 

 

Virtual reality 

Interaction in three-dimensional space is much more complicated than on a 2D screen, 

because we have to take the depth of the scene into account when interacting. Navigation in 

such an environment must work with six degrees of freedom. In addition to the virtual 

scene, we must also visualize the user's position and direction. Also, the selection of objects 

in the virtual scene is different - you need to work with the 3D menu. 

The virtual environment has great advantages in terms of: 

- Navigation - we can also work with head movements 

- Interactions - data gloves, optical motion tracking can be used,… 

- Stereoscopic projections and depth perception - polarizing glasses, active glasses, 

head mounted displays,… 

- Nesting the user into the scene - the user is completely surrounded by the virtual 

world (glasses, specialized rooms - CAVE) 


