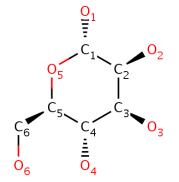
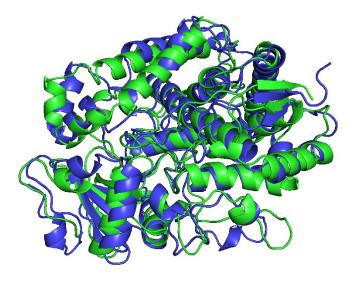
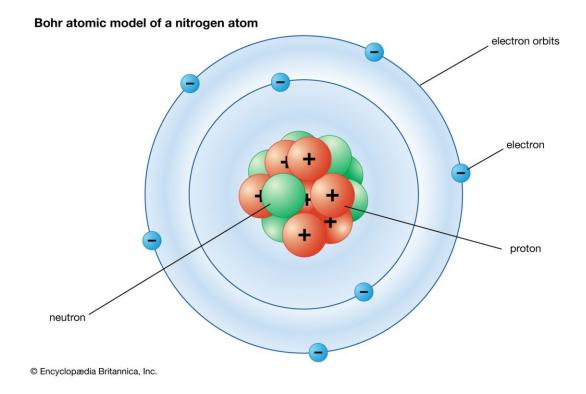

Computer model of a molecule

Radka Svobodová



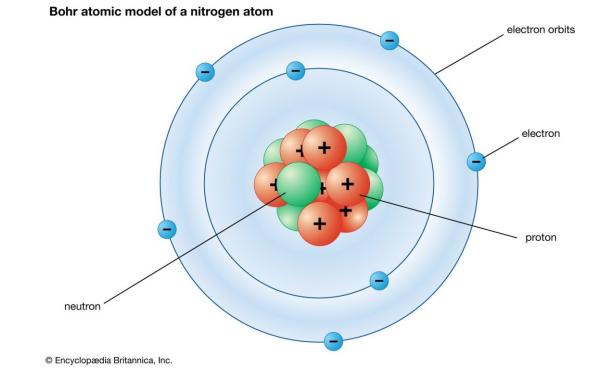


Content


- Introduction: concept of chemoinformatics, content of the subject, history of the field
- **Computer model of a molecule:** 1D, 2D and 3D structure, molecule representation using graph and matrix
- 2D structure (topology) of a molecule:
 - writing a molecule using a string (SMILES, InChi, InChiKey)
 - Molecular graphs: Isomorphism and canonical indexing
 - Cycle search, fingerprints
- 3D structure (geometry) of the molecule:
 - representation using Cartesian and internal coordinates, data formats, geometry comparison

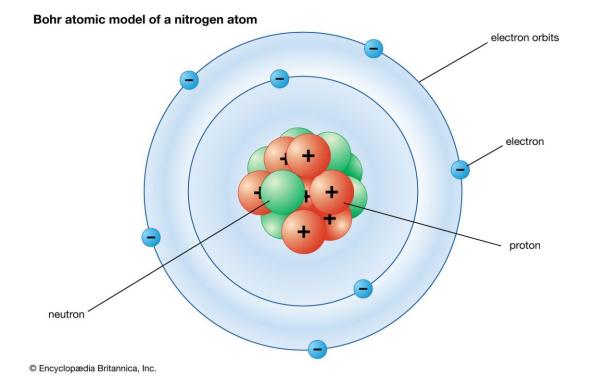
Basic chemical terms I

- Atom: basic building block from which substances are formed
- Structure of an atom:
 - Atom core: protons (positive charge), neutrons (no charge)
 - Electron shell: electrons (negative charge)


Basic chemical terms II

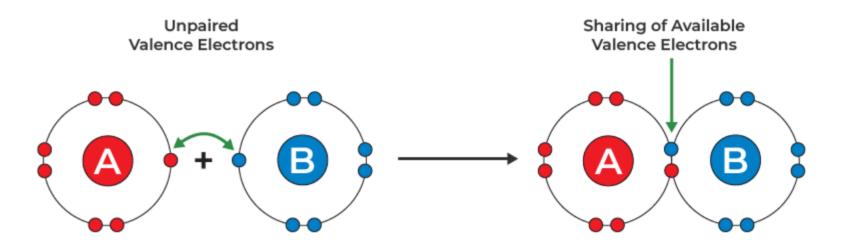
• All systems tend to occupy the state with the lowest possible total energy.

Basic chemical terms III


- The space of the electron shell can be divided into so-called layers.
- All electrons in a layer have the same energy value (this energy is characteristic of that layer).
- The further the layer is from the nucleus, the higher the energy of the electrons in it.
- The electrons in the electron shell therefore fill first the layer closest to the nucleus (the most energetically favorable), then the second closest, and so on.

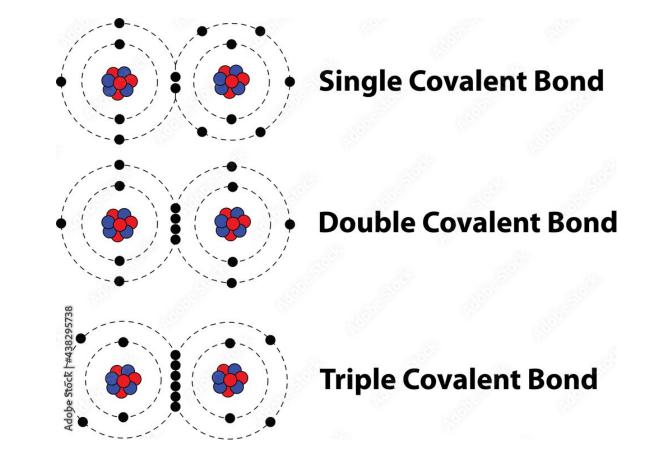
Basic chemical terms IV

- The non-empty layer that is farthest from the core is called the valence layer.
- In this layer are the so-called valence electrons.

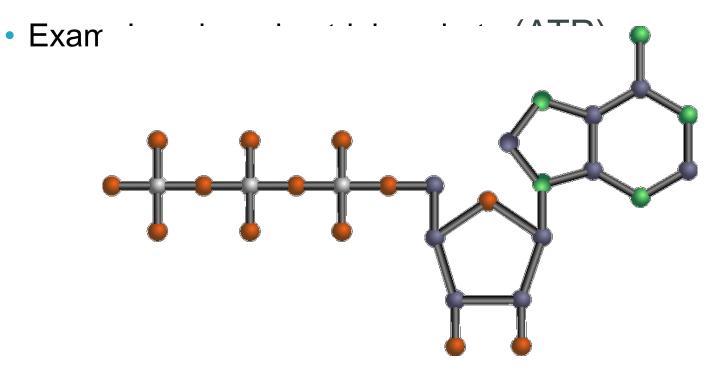

These valence electrons are the subject of the study of chemistry because they can participate in chemical bonding.

Basic chemical terms V

Chemical bond:

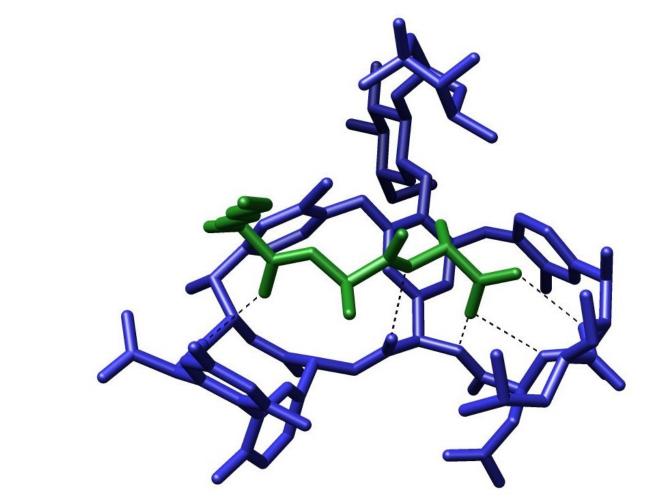

Two atoms come together at a sufficiently small distance (bonding distance) => overlapping of their electron shells. The valence electrons of both atoms change their trajectories. If the resulting system has a lower energy than the original, the atoms remain at bonding distance => chemical bonding is formed.

Basic chemical terms VI


• Bond order:

- single bond: two valence electrons are involved (binding electron pair)
- double bond: two bonding electron pairs are involved
- Triple bond: analogous
- higher multiplicities do not occur in real chemical environments
- Aromatic bond: when single and double bonds alternate, the electrons are delocalised among them. These bonds have properties between single and double bonds.

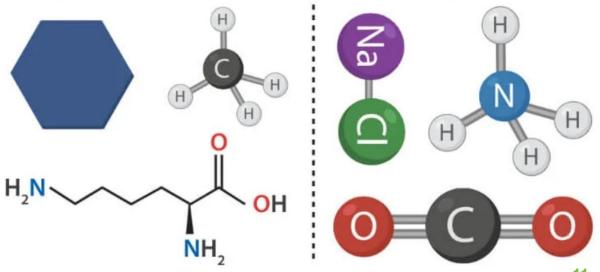
Basic chemical terms VII


 Molecule: A system of atoms joined together by bonds to form a single unit. The basic structural unit of a substance. The carrier of the chemical properties of a substance.

Basic chemical terms VIII

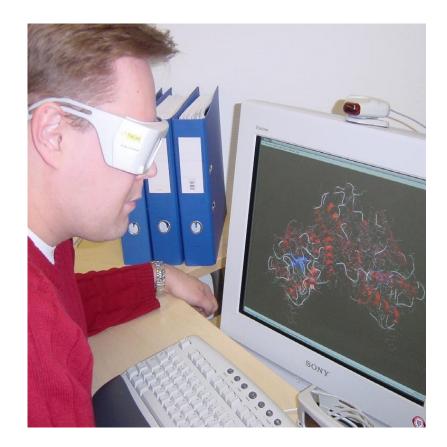
Example:

• Molecular system: A system containing one or more molecules.



Basic chemical terms IX

• Organic molecules:


- Their main component is carbon, the only element that is able to form longer chains of the (-C-)n type, n > 10.
- This property of carbon allows the formation of complex molecules the building blocks of living systems.
- Organic molecules also contain elements: H, O, S, N, F, Cl, Br, I
- Inorganic molecules:
 - All molecules, that are not organic.

Organic vs Inorganic Compounds

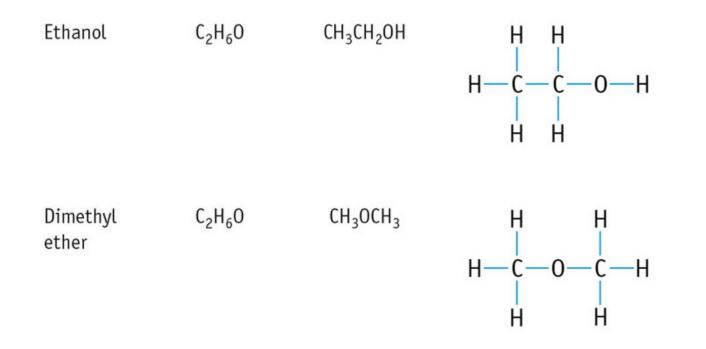
How to describe a molecule in a computer?

- Find out which information describes the molecule
- Write them into the computer

Which information describes the molecule?

Number of atoms?

Ethanol C₂H₆O

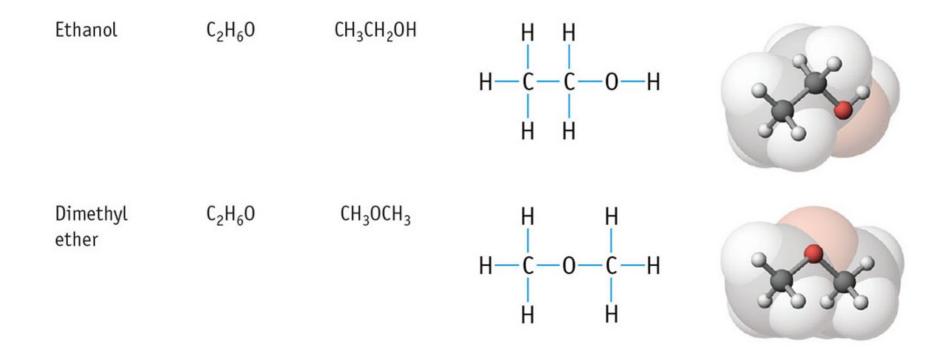

Dimethyl C₂H₆O ether

Which information describes the molecule?

Number of atoms?

Not enough

Number of atoms and positions of bonds?



Which information describes the molecule?

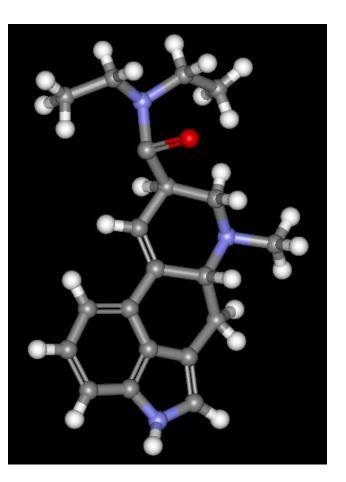
Number of atoms?

Number of atoms and positions of bonds?

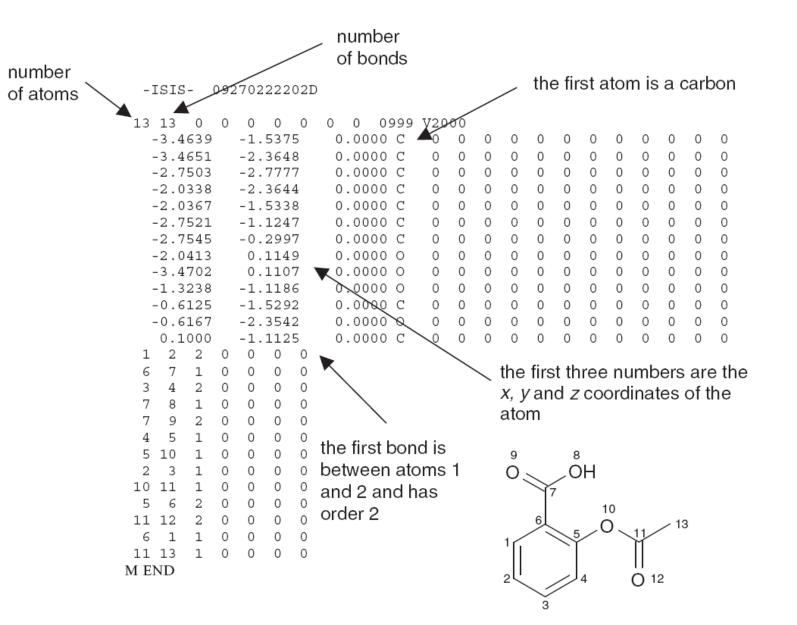
Number of atoms, positions of bonds and positions of atoms in 3D space? Yes

Not enough

Better


Model of molecule for computer processing

Atoms:


- Points in space
- Chemical symbol of the element listed for each

Bonds:

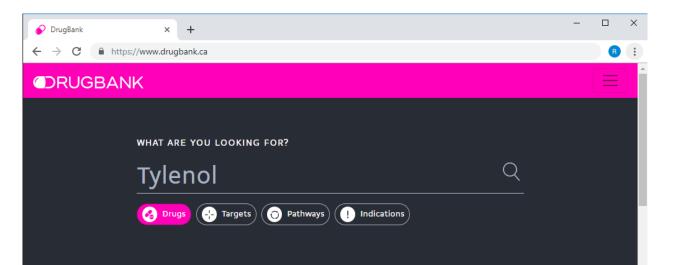
- Pairs of atoms that are bonded
- Bond order

Description of a molecule in a computer

ACD/Labs08061122363D

18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0	21	21	0	0	0	0	0	0	0	0	1	V20	00											
17.5868 -14.5409 -0.1114 C 0 <td>1</td> <td>18.7</td> <td>769</td> <td>-</td> <td>15.</td> <td>250</td> <td>4</td> <td>-0</td> <td>. 10</td> <td>32</td> <td>С</td> <td>0</td> <td></td>	1	18.7	769	-	15.	250	4	-0	. 10	32	С	0	0	0	0	0	0	0	0	0	0	0	0	
17.5465 -17.3106 -0.1545 C 0	1	18.7	571	_	16.	635	9	-0	.12	52	С	0	0	0	0	0	0	0	0	0	0	0	0	
16.3767 -15.2158 -0.1421 C 0 <td>1</td> <td>17.5</td> <td>i868</td> <td>_</td> <td>14.</td> <td>540</td> <td>9</td> <td>-0</td> <td>.11</td> <td>14</td> <td>С</td> <td>0</td> <td></td>	1	17.5	i868	_	14.	540	9	-0	.11	14	С	0	0	0	0	0	0	0	0	0	0	0	0	
16.3559 -16.6013 -0.1633 C 0	1	17.5	i465	_	17.	310	6	-0	.15	45	С	0	0	0	0	0	0	0	0	0	0	0	0	
17.6081 -13.0313 -0.0880 C 0 <td>1</td> <td>16.3</td> <td>3767</td> <td>-</td> <td>15.</td> <td>215</td> <td>8</td> <td>-0</td> <td>. 14:</td> <td>21</td> <td>С</td> <td>0</td> <td></td>	1	16. 3	3767	-	15.	215	8	-0	. 14:	21	С	0	0	0	0	0	0	0	0	0	0	0	0	
20.0592 -14.5322 -0.0715 N 0 <td>1</td> <td>L6.3</td> <td>559</td> <td>-</td> <td>16.</td> <td>601</td> <td>3</td> <td>-0</td> <td>. 16</td> <td>33</td> <td>С</td> <td>0</td> <td></td>	1	L 6. 3	559	-	16.	601	3	-0	. 16	33	С	0	0	0	0	0	0	0	0	0	0	0	0	
17.5247 -18.7799 -0.1764 N 0 <td>1</td> <td>17.6</td> <td>6081</td> <td>-</td> <td>13.</td> <td>031</td> <td>3</td> <td>-0</td> <td>. 08</td> <td>80</td> <td>С</td> <td>0</td> <td></td>	1	17.6	6081	-	13.	031	3	-0	. 08	80	С	0	0	0	0	0	0	0	0	0	0	0	0	
15.1150 -14.4620 -0.1527 N 0 <td>- 2</td> <td>20.0</td> <td>592</td> <td>-</td> <td>14.</td> <td>532</td> <td>2</td> <td>-0</td> <td>.07</td> <td>15</td> <td>N</td> <td>0</td> <td></td>	- 2	20.0	592	-	14.	532	2	-0	.07	15	N	0	0	0	0	0	0	0	0	0	0	0	0	
20.0742 -13.3140 -0.0089 0	1	17.5	j247	-	18.	779	9	-0	.17	64	N	0	0	0	0	0	0	0	0	0	0	0	0	
21.1073 -15.1564 -0.0523 0 0 <td>1</td> <td>15.1</td> <td>150</td> <td>-</td> <td>14.</td> <td>462</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	1	15.1	150	-	14.	462	0					0	0	0	0	0	0	0	0	0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	20.0	0742	-	13.	314	0	-0	. 00	89	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	21.1	.073	-	15.	156	4	-0	.05	23	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	16.4	1750	-	19.	375	9	0	. 00	00	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	18.5	i697	-	19.	403	0	-0	. 26	50	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												_	0	0	0	0	_	_	0	0	0	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												_		_	_	_	_		_	_	_	_		
18.5209 -12.6823 0.4410 H 0												-			-	-			-		-			
2 1 1 0 0 0 3 1 2 0 0 0 4 2 2 0 0 0 5 3 1 0 0 0 6 4 1 0 0 0 6 5 2 0 0 0 6 5 2 0 0 0 6 5 2 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6<																-					-			
3 1 2 0 0 0 4 2 2 0 0 0 5 3 1 0 0 0 6 4 1 0 0 0 6 5 2 0 0 0 6 5 2 0 0 0 3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 19 7 1 0 0 0 19 7 1 0 0								0	. 44:	10	н	0	0	0	0	0	0	0	0	0	0	0	0	
4 2 2 0 0 0 5 3 1 0 0 0 6 4 1 0 0 0 6 5 2 0 0 0 3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 16 2 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0				-	-	_	-																	
5 3 1 0 0 0 6 4 1 0 0 0 6 5 2 0 0 0 3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 10 15 2 0 0 0 11 0 0 0 0 11 0 0 0 0 11 1 0 0 0 12 1 0 0 0 13 1 0 0 0 14 1																								
6 4 1 0 0 0 6 5 2 0 0 0 3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 120 7 1 0 0 0																								
6 5 2 0 0 0 3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0																								
3 7 1 0 0 0 1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 11 0 0 0 0 10 16 2 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0																								
1 8 1 0 0 0 4 9 1 0 0 0 5 10 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0				_	_	_																		
4 9 1 0 0 0 5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0	_	-	_	-	-																			
5 10 1 0 0 0 8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0				-																				
8 11 2 0 0 0 8 12 2 0 0 0 9 13 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0						_																		
8 12 2 0 0 0 9 13 2 0 0 0 9 14 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0						-																		
9 13 2 0 0 0 9 14 2 0 0 0 10 15 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0																								
9 14 2 0 0 0 10 15 2 0 0 0 10 16 2 0 0 0 10 16 2 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0				_	_	_																		
10 16 2 0 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0				0	0	0																		
10 16 2 0 0 0 0 17 2 1 0 0 0 18 6 1 0 0 0 19 7 1 0 0 0 20 7 1 0 0 0	10	15	2	0	0	0	0																	
17 2 1 0 0 0 0 18 6 1 0 0 0 0 19 7 1 0 0 0 0 20 7 1 0 0 0 0																								
19710000 20710000	17		1	0	0	0	0																	
20 7 1 0 0 0	18	6	1	0	0	0	0																	
	19	7	1	0	0	0	0																	
21 7 1 0 0 0 0	20	7	1	0	0	0	0																	
	21	7	1	0	0	0	0																	

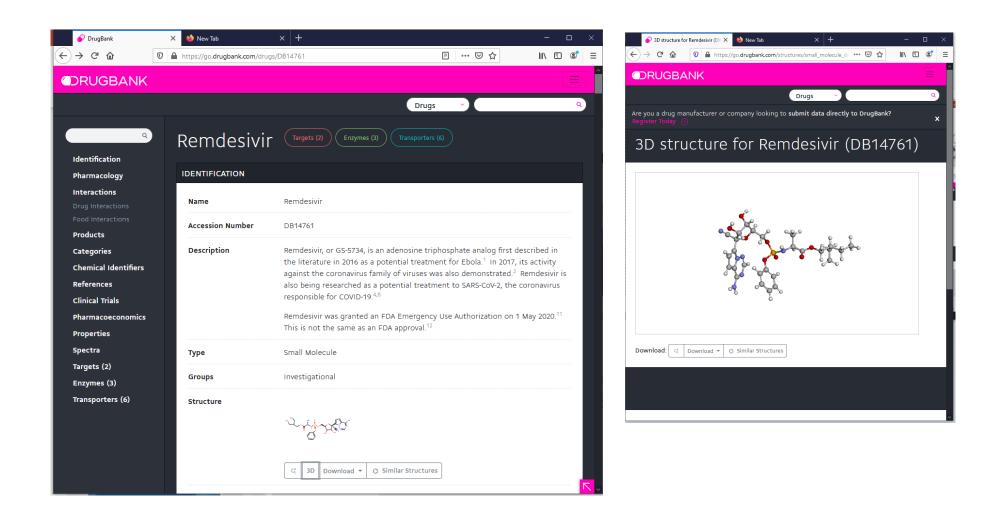
Challenge:


Draw this molecule. What is the name of the molecule?

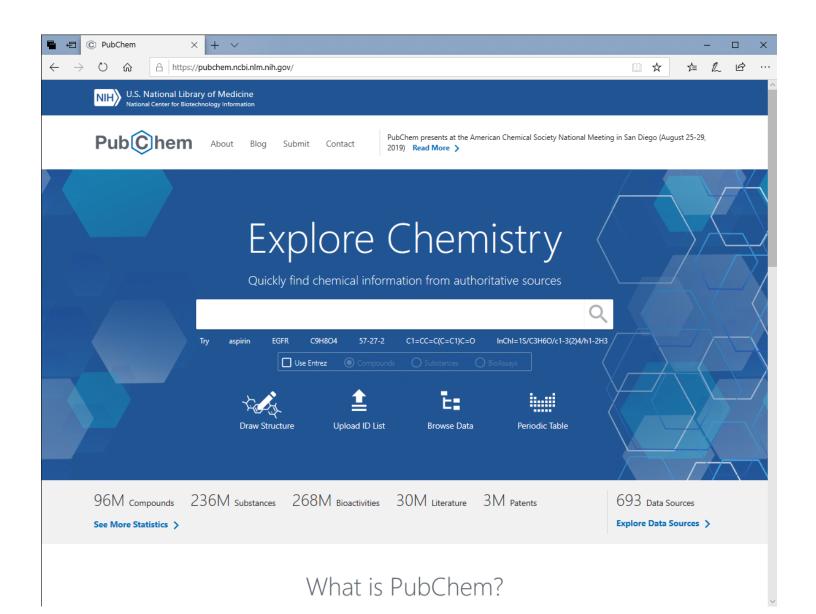
Databases of small organic molecules

- > 1 M structures of small molecules
- Small molecule: < 100 atoms</p>
- Small molecules = "drug-like" molecules
- Experimental structures
- Predicted (computed) structures

DrugBank – database of drugs


ORUGBANK

The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug data with comprehensive drug target information.


The latest release of DrugBank (version 5.1.4, released 2019-07-02) contains 13,369 drug entries including 2,612 approved small molecule drugs, 1,300 approved biotech (protein/peptide) drugs, 130 nutraceuticals and over 6,317 experimental drugs. Additionally, 5,158 non-redundant protein (i.e. drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each DrugCard entry contains more than 200 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data.

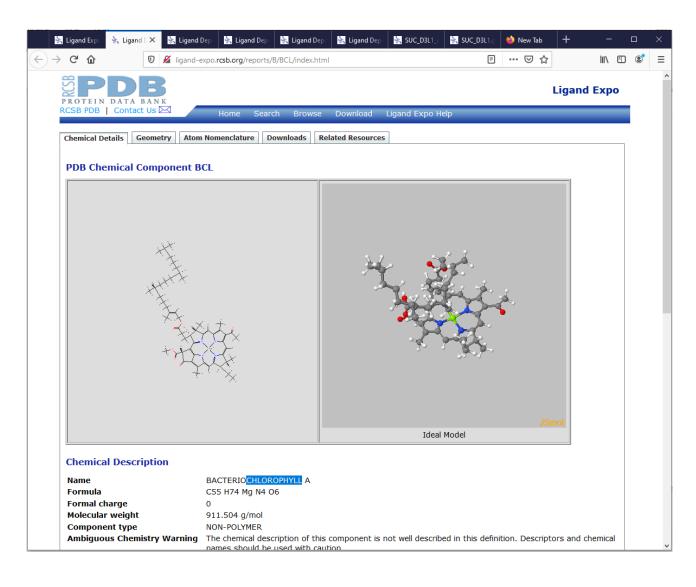
DrugBank for Commercial Use \rightarrow)

DrugBank – database of drugs

PubChem – database of organic molecules

PubChem – database of organic molecules

法 Ligand E 🛛 ⓒ Morr 🗙	📉 Ligand 🛛 📉 Ligand 🛛 📉 Ligand 🛛 📉 Ligand 🕅 📉 Ligand 👘	d 🛙 🔣 SUC_D31 🛛 😹 SUC_D31 🛛 🔶 New Tale 🕇	IN IIN III IIII IIIII IIIII IIIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
< → ୯ ŵ	🛛 🖴 https://pubchem.ncbi.nlm. nih.gov /compound/5288826	···· 🖂 🕁 📗	N ⊡ 💐 =
Get the latest p	n emerging, rapidly evolving situation. ublic health information from CDC: <u>https://www.coronavirus.gov</u> . esearch from NIH: <u>https://www.nih.gov/coronavirus</u> .		
NIH National Li National Center for	brary of Medicine or Biotechnology Information		
PubChe	M About Blog Submit Contact	Q Search Pul	bChem
compound summary	nine		_
		CONTENTS	÷
PubChem CID:	5288826	Title and Summary	^
		1 Structures	~
Structure:	A D	2 Names and Identifiers 3 Chemical and Physical Properties	~
	2D 3D Crystal	4 Spectral Information	~
	Find Similar Structures	5 Related Records	~
	^	6 Chemical Vendors	
		7 Drug and Medication Information	~
Chemical Safety:	Irritant	8 Pharmacology and Biochemistry	~


The second secon

O Hara and Manufacture

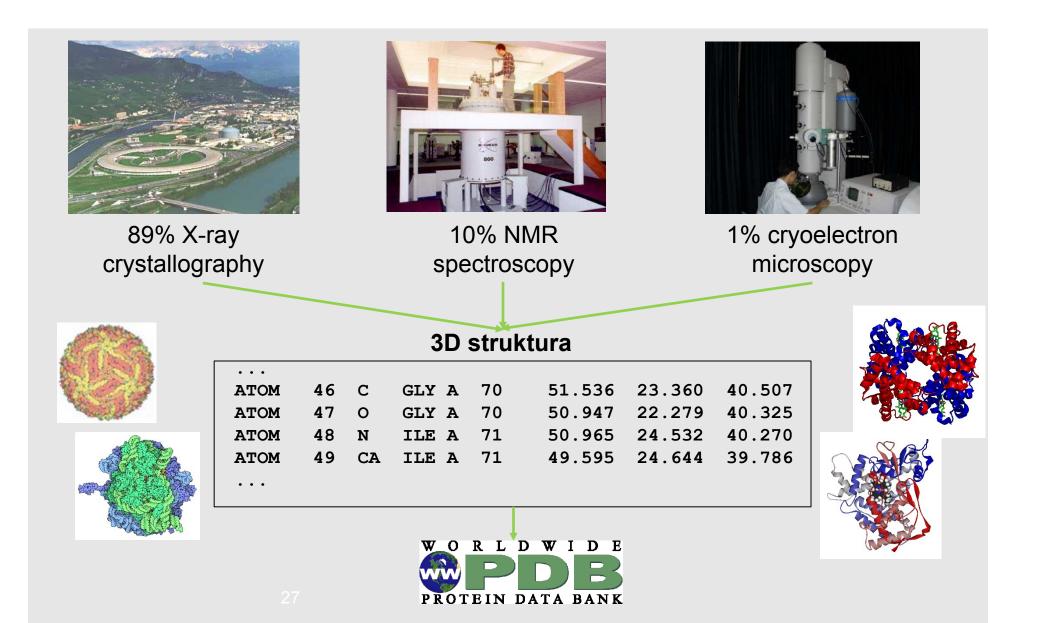
Ligand Expo – database of ligands Ligand = molecule bound in a protein

C' 🏠									
- w	🛛 🎽 ligand-expo	.rcsb.org/ld-search	.html			Ē	⊌ ☆		III\ 🗊
PROTEIN DATA								Ligand E	хро
RCSB PDB Contac	ct Us 🖂	Home Searc	h Browse	Download	Ligand Expo H	elp			
chil. c		. T .							
Chemical Com									
Jse the forms belo									
InChi/InChiKey You can a • Chemical subst Either stra from scra • Search for instra download these • You can also se	mical components by y chemical description also check to see if a ructure searches can art with a SMILES de thch (Launch without ances of a chemical e coordinates in PDE parch for analogs to in the top menu ba	on. a 3-letter code is in also be conduces scription or cher ut input). It can a component throo B, MOL/SDF and the standard an	being held by cted by <i>starting</i> mical data file (also generate c ughout the PDI mmCIF format:	a deposition g from a che see drop-me hemical comp B. The Displ a s.	in progress. mical drawing c nu for acceptabl ponent definition ny option allows	reated within the formats), or a formats), or a from your 20 you to simply	ne MarvinSketo draw a 2D che o structure. see a list of Pl	ch tool. emical structu DB codes, or	to
our query results		le! Each hit from	n your initial qu	ery will conta	in links to conti	nue searching b	y similar nam	e, chemical	
ormula, or structure	e (SMILES).								
					_				
MOLECULAR N	AME, FORMULA,	AND DESCRIP	TOR SEARCH	OPTIONS	?				
MOLECULAR N Search term chlorop			TOR SEARCH			~			
						~		Go	5
Search term chlorop	bhyll	S	earch type Mo	lecular name (e:		5		Gc	•
Search term chlorop		S	earch type Mo	lecular name (e:		y		Gc)
Search term chlorop	ohyll F AND/OR STRUC	S TURE SEARCH	earch type Mo	lecular name (e		<u>_</u>		Gc	>
Search term chlorop	ohyll F AND/OR STRUC	S TURE SEARCH	earch type Mo	lecular name (e		<u>-</u>		G	
Search term chlorop	ohyll F AND/OR STRUC	S TURE SEARCH	earch type Mo	lecular name (e ?] mat OR				Gc	5
Search term chlorop SKETCH INPUT File name Browse	ohyll F AND/OR STRUC	S TURE SEARCH	earch type Mo	lecular name (e ?] mat OR	cact sub-string)	× ×		Gc	
Search term chlorop SKETCH INPUT File name Browse SMILES string	ohyll F AND/OR STRUC . No file selected.	STURE SEARCH	earch type Mo	lecular name (e 1 mat DR Di	act sub-string)	 			
Search term chlorop SKETCH INPUT File name Browse SMILES string	ohyll F AND/OR STRUC	STURE SEARCH	earch type Mo	lecular name (e 1 mat DR Di	act sub-string)	✓ ✓			
Search term chlorop	NSTANCES OF C	STURE SEARCH	earch type Mol OPTIONS Nat MOL/SDF forr (PONENTS BY	lecular name (e mat OR Di 3-LETTER	act sub-string)	✓ ✓			

Ligand Expo – database of ligands Ligand = molecule bound in a protein

Databases of biomacromolecules

Mainly proteins

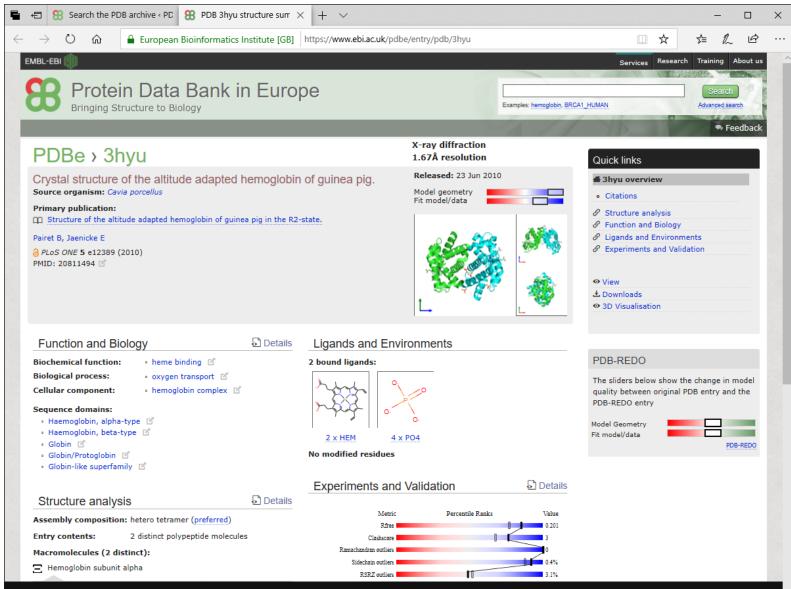

- > 200 k experimental structures
- > 200 M computed structures

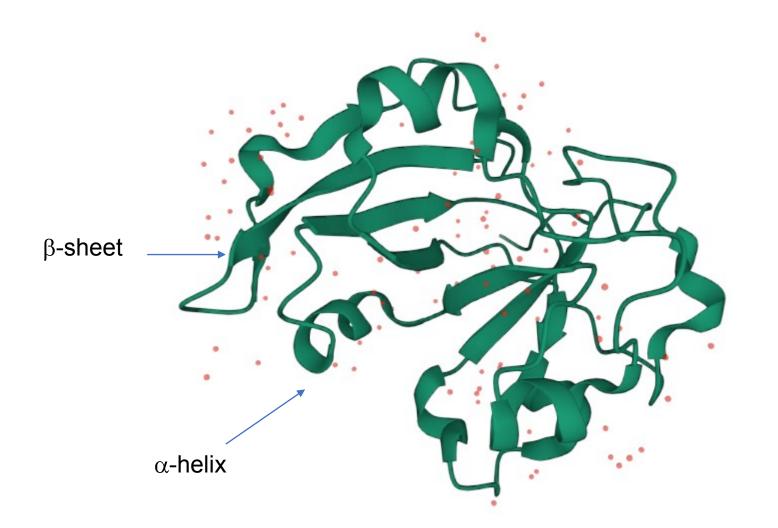
AlphaFold Protein Structure Database

alapad by DeepMind and EMP

Protein Data Bank – sources of data

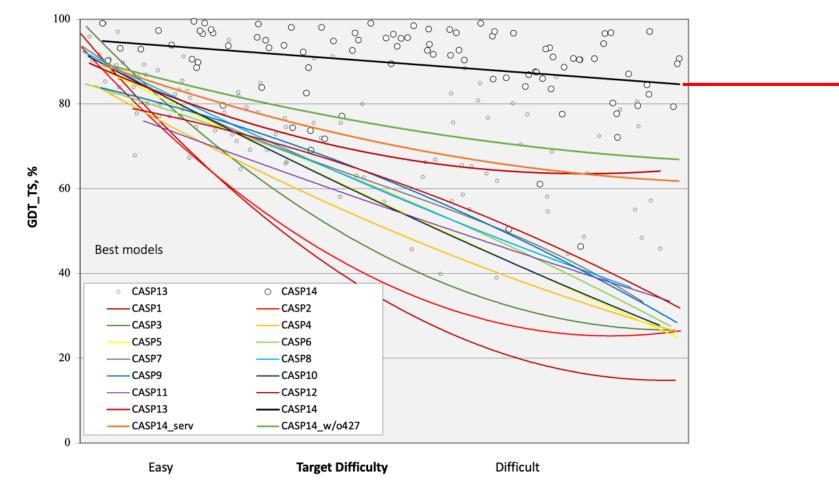
The worldwide Protein Data Bank


www.wwPDB.org • info@wwPDB.org


> 225 000 biomacromolecular structures

→ Č) 📦 🔓 European Bioinformatics Ins	titute [GB] https://www.ebi.ac.uk/pdbe/		_ ☆ ☆	1	ø
C Luropean bioinformatics ins		Service		~~	iries sins sy
Bringing Structure to Biology	Europe	Examples: hemoglobin, BRCA1_HUMAN		Searce Advanced	
DBe home Deposition PDBe services PDBe training	Documentation About PDBe		< Share	🤜 Fee	dbac
PDBe is the European resource for the collection, organisation Read more about PDBe.	and dissemination of data on biological macromolecular structures.	Popular			
Featured structure Pygmalion 5x2g The September image in or edit DNA and the story of a Read more Previous featured structures	1st September 2019 Ir <u>2019 calendar</u> is inspired by a molecular system that can statue coming to life.	EMsearch C	News Events Training Contact us		
News Links added to raw experimental data at PDBe 12 August, 2019	Events Art Exhibition: Molecules of Life Kendrew Foyer, EBI South Building Wellcome Genome Campus 10 Sep 2019 to 27 Sep 2019	Latest archive statistics As of 11 September 2019 the F (latest PDB entries, chemistry, 9016 entries (latest map releas latest updates).	biology) and EMD	DB contair	ns
mprove your previously released PDB coordinates with OneDep August, 2019 A celebration of the PDB Art project	EBI Structural bioinformatics course EMBL-EBI, Cambridge, UK 16 Sep 2019 to 20 Sep 2019	Tweets by @PDBeurope Protein Data Bank Retweeter David Armstrong @DaveASci	d		
Mandatory mmCIF format for crystallographic depositions to the PDB	EBI Exploring Biological Sequence course EMBL-EBI, Cambridge, UK 10 Oct 2019	Really looking forward to training course Medellin @raod85, @unubiolac a supporting this. https://twitter.com/raod85 4	in Colombia. Than Ind @CabanaGcrf f	ks to for	94
1 July, 2019	More events			4	13h

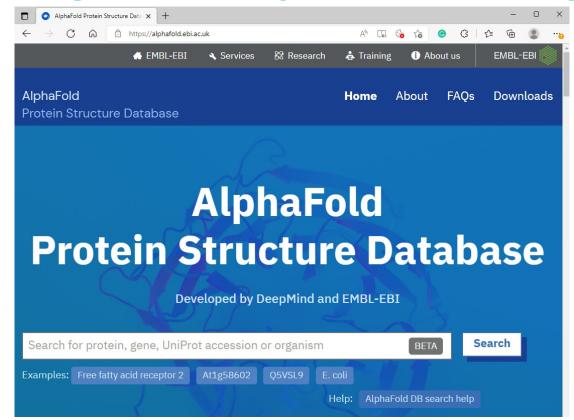
This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.


This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.

Scabin 6vv4

Prediction of protein structures by AlphaFold

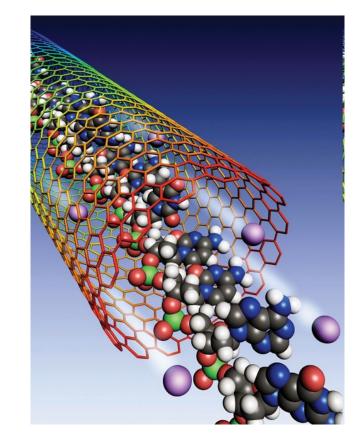
Structures generated by artificial intelligence



Structure prediction challenge 2020: AlphaFold2 wins

https://predictioncenter.org/casp14/doc/presentations/2020_11_30_CASP14_Introduction_Moult.pdf

Prediction of protein structures by AlphaFold


Structures generated by artificial intelligence

> 200M protein structures

Exercises

- Search the PubChem database for a testosterone molecule:
 - See its 2D structure. How many O's does it have?
 - Look at its 3D structure. Is any of its cycles planar?
 - Look at its SDF file. What are the x, y, and z coordinates of the first atom?
- Search the DrugBank database for a penicillin molecule:
 - How many S atoms does it have?
 - Are any of its cycles planar?
 - Look at its SDF file. What 2 atoms form the first bond?
- Search the LigandExpo database for a fructose molecule:
 - How many double bonds does it has?
 - How many C's are off cycle?
 - Look at its SDF file. What are the coordinates of the first hydrogen?
- Look up the green mamba venom molecule in the Protein Data Bank:
 - How many beta-sheets does it have?
 - Look at the PDB file. Which amino acid is the first?

Thank you for your attention

